Чтение онлайн

на главную - закладки

Жанры

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:

Раскрываем секрет фокуса

Есть что-то сомнительное в этих заявлениях о суперважности бозона Хиггса. В конце концов, откуда вообще мы узнали, что он такой важный, до того, как его нашли? Что заставляло нас без конца обсуждать свойства гипотетической частицы, которую никто никогда не наблюдал?

Представьте себе, что вы видите выступление очень талантливого иллюзиониста, выполняющего необычный карточный фокус. Он состоит в том, что иллюзионист заставляет карту парить в воздухе. Этот трюк приводит вас в полное недоумение, поскольку вы абсолютно уверены: иллюзионист, заставляя карты левитировать, не использует сверхъестественные силы. Вы достаточно умны и настойчивы и, немного поразмыслив, придумываете способ, с помощью которого иллюзионист мог бы проделать свой фокус, а именно – прикрепив к карте тонкую

невидимую нить. На самом деле не трудно придумать и другие варианты – например, удерживать карты в воздухе с помощью струи теплого воздуха, но сценарий с нитью – самый простой и правдоподобный. Можно пойти и дальше и даже проделать этот фокус дома – проверить, действительно ли с правильной нитью фокус получается не хуже, чем у иллюзиониста.

Потом вы идете на следующее представление этого иллюзиониста и опять видите левитирующие карты. Все в этом фокусе выглядит в точности так же, как в том опыте, который вы проделали дома. Но вот нить в руках иллюзиониста вы не видите!

Бозон Хиггса в Стандартной модели похож на эту нить. Довольно долго мы непосредственно его не видели, а видели только результаты его работы. Или по-другому: мы наблюдали явления, очень хорошо объяснимые в том случае, если он существует, но не имеющие никакого смысла без него. Без бозона Хиггса такие частицы, как, например, электрон, имели бы нулевую массу и двигались бы со скоростью света, а на самом деле у них есть масса и движутся они медленнее. Без бозона Хиггса многие элементарные частицы были бы одинаковыми, а в реальности они очень разные – с различными массами и временами жизни. С бозоном Хиггса все эти ключевые свойства элементарных частиц сразу объясняются.

В подобных обстоятельствах – идет ли речь о картах или о бозоне Хиггса – существует два варианта: либо наша теория правильна, либо существует еще более интересная и сложная теория. Факты налицо: карты левитируют, частицы обладают массой. Этому должно быть объяснение. Если мы его знаем, то можем поздравить себя с тем, что оказались такими умными, а если это нечто более сложное, то нам предстоит узнать что-то очень интересное. Может быть, частица, найденная на БАКе, выполняет только часть тех функций, которые, по нашему предположению, должен выполнять бозон Хиггса, но не все. А может быть, та работа, которую должен выполнять бозон Хиггса, делается несколькими частицами, из которых нашли пока только одну. Что бы там ни было, мы всегда окажемся в выигрыше, но при условии, что нам в конце концов удастся понять, что же происходит в действительности.

Фермионы и бозоны

Давайте посмотрим, сможем ли мы перевести на более научный язык эти метафорические заклинания «группы поддержки» бозона Хиггса, с помощью которых нам демонстрируют его важность, и уже на этом языке объяснить, какую функцию предположительно он должен выполнять.

Частицы бывают двух типов: частицы, из которых составлена материя, их называют фермионами, и частицы-переносчики взаимодействий, называемые бозонами. Разница между ними состоит в том, что фермионам требуется для выживания много места, в то время как бозоны могут жить прямо на головах друг у друга. Нельзя взять горсть одинаковых фермионов и поместить их всех в одном месте – законы квантовой механики не позволят сделать это. Вот почему из фермионов составлены твердые объекты типа столов и планет.

Удивительное дело – чем меньше масса частицы, тем больше места она занимает. Атомы состоят всего из трех типов фермионов – верхних кварков, нижних кварков и электронов, удерживаемых вместе с помощью взаимодействий. Атомные ядра, состоящие из протонов и нейтронов, которые в свою очередь состоят из верхних и нижних кварков, относительно тяжелы и занимают относительно небольшие области пространства. Электроны, напротив, намного легче (около 1/2000 массы протона или нейтрона), но занимают гораздо больше места. В действительности именно электроны в атомах придают веществу присущую ему твердость.

Бозоны вообще не занимают никакого места. Два бозона или два триллиона бозонов – все равно сколько – могут с легкостью разместиться в том же пространстве, сидя прямо друг на друге. Бозоны, частицы, переносящие взаимодействие, вместе могут создать макроскопическое силовое поле типа гравитационного, удерживающее нас на Земле, или магнитного поля, которое заставляет отклоняться стрелку компаса.

Физики обычно считают

слова «сила», «взаимодействие» и «связь» практически синонимами. Это отражает одну из глубоких истин, которая открылась физикам в XX веке: силы можно рассматривать как результат обмена частицами. (Как мы увидим позже, можно сказать и так: силы «возникают из колебаний полей».) Когда Луна чувствует гравитационное притяжение Земли, можно сказать, что между двумя этими небесными телами курсируют туда-сюда гравитоны (которые, правда, пока еще не обнаружены). Когда электрон захватывается атомным ядром, это происходит потому, что между ними произошел обмен фотонами. Но взаимодействия также ответственны и за другие процессы, происходящие с элементарными частицами, к примеру за аннигиляцию и распад, а не только за отталкивание и притяжение. Когда распадаются радиоактивные ядра, мы можем приписать эти события работе либо сильных, либо слабых ядерных сил, в зависимости от того, какой распад происходит. Силы в физике элементарных частиц отвечают за множество разнообразных процессов.

Помимо бозона Хиггса, о котором пока умолчим, мы знаем четыре вида сил, каждому из которых отвечает свой тип бозонов. Есть гравитация, очевидно, связанная с частицей, названной гравитоном. Нужно признать, что мы пока реально не наблюдали отдельных гравитонов, поэтому гравитоны часто исключаются из обсуждения Стандартной модели, хотя, конечно, силой тяжести пренебречь нельзя – все мы ее чувствуем ежесекундно и будем чувствовать всегда, если только не улетим в космос. Гравитация является силой, и, согласно основным правилам квантовой механики и теории относительности, обязательно существует частица, связанная с гравитационным взаимодействием. Ее назвали «гравитон».

А еще есть электромагнетизм – в 1800-х годах физики выяснили, что электричество и магнетизм – проявления одной и той же основной силы. Частицы, связанные с электромагнитными взаимодействиями, называются фотонами, и их-то мы все время непосредственно и наблюдаем. Частицы, которые ощущают электромагнитное взаимодействие, – заряженные, а те, которые не ощущают, – нейтральные. Электрические заряды могут быть положительными или отрицательными, причем одноименные заряды отталкиваются друг от друга, а противоположные – притягиваются. Способность одноименных зарядов отталкиваться друг от друга играет невероятно важную роль в устройстве Вселенной. Будь электромагнитные силы исключительно силами притяжения, каждая частица притягивала бы все остальные частицы, и все вещество во Вселенной сколлапсировало бы в одну гигантскую черную дыру. К счастью, кроме притяжения у нас есть еще и электромагнитное отталкивание, и это делает жизнь интересней.

Ядерные силы

У нас есть два типа «ядерных» сил, называемых так из-за того, что в отличие от гравитационного и электромагнитного взаимодействия они действуют только на очень коротких расстояниях, сопоставимых с размером ядра атома или еще меньших. Существует сильное ядерное взаимодействие, которое удерживает кварки внутри протонов и нейтронов, и его частицы носят выразительное имя – глюоны (клейкие частицы). Сильные ядерные силы (естественно) очень сильны, и глюоны взаимодействуют с кварками, но не с электронами. Глюоны имеют нулевую массу, как фотоны и гравитон. Когда взаимодействие переносится безмассовыми частицами, логично предположить, что их влияние распространяется на очень большие расстояния, однако сильное взаимодействие, вопреки ожиданиям, очень короткодействующее.

В 1973 году Дэвид Гросс, Дэвид Политцер и Фрэнк Вильчек показали, что сильное взаимодействие обладает удивительным свойством: чем больше расстояние между кварками, тем сильнее они притягиваются друг к другу. В результате, когда вы пытаетесь оторвать два кварка друг от друга, вам приходится затрачивать все больше и больше энергии, так что в конечном счете выгоднее просто создать новые кварки. Это все равно что пытаться растянуть резиновую нить, на каждом конце которой сидит кварк. Вы можете тянуть за оба конца, но никогда не отделите один конец от другого. А когда при сильном натяжении резиновая полоска порвется, появятся два новых конца. Таким образом, отдельных свободных кварков не существует – они (как и глюоны) обречены на заточение внутри более тяжелых частиц. Эти тяжелые составные частицы, состоящие из кварков и глюонов, называются адронами – именно в их честь БАК получил свое название. Гросс, Политцер и Вильчек в 2004 году получили за это открытие Нобелевскую премию.

Поделиться:
Популярные книги

Призыватель нулевого ранга

Дубов Дмитрий
1. Эпоха Гардара
Фантастика:
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга

Как я строил магическую империю 7

Зубов Константин
7. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фантастика: прочее
5.00
рейтинг книги
Как я строил магическую империю 7

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Идеальный мир для Лекаря 20

Сапфир Олег
20. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 20

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Отряд

Валериев Игорь
5. Ермак
Фантастика:
альтернативная история
5.25
рейтинг книги
Отряд

Я еще князь. Книга XX

Дрейк Сириус
20. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще князь. Книга XX

Повелитель корней

Ланцов Михаил Алексеевич
4. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Повелитель корней

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Наследник жаждет титул

Тарс Элиан
4. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник жаждет титул