Человек редактированный, или Биомедицина будущего
Шрифт:
Часто случаются и противоположные ситуации, когда в организме отсутствует или недостаточна экспрессия какого-то гена, и это приводит к патологии. В таком случае для регуляции конкретного гена можно подобрать направляющую РНК, которая распознает последовательность именно этого гена, добавить белок Cas9 без нуклеазной активности, генно-инженерным путем присоединить активаторный белок, и тогда мы сможем очень точно и целенаправленно активировать нужный ген.
Серьезно говорить об использовании этих подходов для лечения людей пока еще преждевременно, но вне организма, in vitro, на модельных системах такая возможность сейчас активно изучается.
Наверняка каждый читающий
Эти ранние зародышевые стволовые клетки называют эмбриональными — по месту их нахождения или плюрипотентными — по их функциональным возможностям. Плюрипотентность (от лат. pluri — много) означает способность дифференцироваться в большое количество разнообразных клеточных типов. Эти клетки уникальны своим потенциалом: из них можно получить клетки и крови, и мозга, и кишечника, и печени, и... еще пару сотен других. Но откуда их взять для взрослого человека, организм которого уже прошел этап эмбрионального развития?
А что, если попробовать использовать для этого обычную соматическую клетку? Ведь в конце концов, геном и у одноклеточного эмбриона, и у стоклеточного зародыша, и у взрослого организма одинаков. Просто для развития и жизнедеятельности организма не нужна работа всех генов во всех клетках одновременно. На ранних стадиях развития сначала работают одни комбинации генов, через пару дней некоторые гены выключаются и включаются другие, еще через неделю возникает новая комбинация и т. д. Если же мы возьмем взрослый организм, то в каждой определенной его клетке на протяжении всей жизни должна работать стабильная комбинация некоторых генов, причем в разных специализированных клетках потребуется активность разных генов, а остальные будут выключены (репрессированы).
Тонким балансом между активностью одних и репрессией других генов как раз и достигается клеточное совершенство — гомеостаз, то есть саморегуляция, направленная на поддержание стабильного состояния. Но что произойдет, если в специализированной клетке взрослого организма активировать те гены, которые нужны на стадии стоклеточного эмбриона, то есть репрограммировать ее — заставить выполнять программу эмбриональной клетки? Для этого можно провести генную терапию. Мы используем вирус, в котором находится нужный ген, по каким-то причинам не работающий в клетке, затем вводим нашу конструкцию в ДНК клетки, и вот — извольте! — в ней начинает работать ген, привнесенный вирусом.
Именно так поступили японские исследователи под руководством Синъя Яманака с клетками мыши, а чуть позже и человека. В 2006 году были опубликованы результаты этого исследования. Ученые применили к клеткам, полученным из взрослого организма, генную терапию четырьмя транскрипционными факторами, которые активно работают на стадии эмбрионального развития. И — о чудо! — эти клетки репрограммировались в эмбриональное состояние плюрипотентности, а эту четверку транскрипционных факторов назвали «магическая четверка» (magic four).
Это значит, что любую клетку нашего организма в лабораторных условиях можно
Итак, применяя генную терапию для клетки, мы можем изменять ее судьбу, но, к сожалению, не всегда бесследно. Введенные вирусы, гены, дополнительные последовательности ДНК представляют потенциальную, хотя и не очевидную опасность. Однако если точечно активировать «магическую четверку» генов с помощью направленного действия активаторной CRISPR/Cas9-системы, клетка репрограммируется до состояния плюрипотентной стволовой без всякого генетического следа от проведенного воздействия.
При использовании CRISPR/Cas9 исследователи вводят свою генно-инженерную конструкцию прицельно, направляя ее на каждый конкретный ген. Конечно, выбрать его весьма непросто — необходимы большая работа и хорошее понимание процесса. Но зато если мы поймем, какой ген в каждом патологическом процессе является ключевым, и сможем с помощью этой системы на него воздействовать, то подобный подход позволит решить многие медицинские и биологические проблемы. В частности, CRISPR/Cas9 позволяет углубить наши знания об устройстве живой клетки и о тех сложнейших процессах реализации (проявления) генетической информации, которые в ней происходят.
Многие помнят изображение хромосом в школьных учебниках в виде буквы X. Оно очень распространено, хотя надо понимать, что такой вид хромосомы имеют только в момент, когда клетка начинает переходить к процессу деления — митоза. Именно своим перекрестьем они прикрепляются к определенным структурам во время метафазы (стадия митоза) и расходятся по разным клеткам. Они так и называются — метафазные хромосомы. В этот момент они сильно конденсированы, то есть генетический материал в них очень плотно упакован, ведь хромосомы содержат нить ДНК длиной несколько десятков сантиметров, генетическую информацию которой надо поделить между двумя дочерними клетками без потерь.
Сам процесс деления клетки продолжается недолго. Большую часть времени клетка пребывает в интерфазе — состоянии между делениями, когда занимается своей «профессиональной» деятельностью. Длительность интерфазы у клеток разной специализации сильно различается. Например, нейроны находятся в стадии интерфазы практически на протяжении всей жизни организма; можно считать, что они не делятся. А вот активированные лимфоциты будут делиться примерно один раз за промежуток времени от двух до двадцати четырех часов, в зависимости от степени их активации. Им же надо бороться с инфекцией! Именно после встречи с инфекцией они становятся активированными и начинают делиться. В любом случае клетка уделяет значительное время выполнению своих специальных функций, то есть определенная часть генетической информации должна быть постоянно доступна для считывания.
Запечатанный во тьме. Том 1. Тысячи лет кача
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
рейтинг книги
Старая дева
2. Ваш выход, маэстро!
Фантастика:
фэнтези
рейтинг книги
Наследник 2
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Крещение огнем
5. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Мастер Разума III
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
рейтинг книги
Охотник за головами
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
рейтинг книги
Адвокат вольного города 7
7. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
фантастика: прочее
рейтинг книги
Прометей: каменный век II
2. Прометей
Фантастика:
альтернативная история
рейтинг книги
Пустоцвет
Любовные романы:
современные любовные романы
рейтинг книги
Я еще не князь. Книга XIV
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Город драконов
1. Город драконов
Фантастика:
фэнтези
рейтинг книги
Взлет и падение третьего рейха (Том 1)
Научно-образовательная:
история
рейтинг книги
