Чтение онлайн

на главную - закладки

Жанры

Человек редактированный, или Биомедицина будущего
Шрифт:

Но кусочки, на которые клетка расщепила ДНК бактериофага, не пропадают просто так. Они встраиваются в определенный район генома самой бактерии, который мы как раз и назвали CRISPR.

Итак, та бактерия, которой счастливо удалось избежать гибели от бактериофага и встроить крошечные кусочки его ДНК (короткие фрагменты по десять-пятнадцать нуклеотидов) в свой геном, получает устойчивость к данному бактериофагу и при делении передает эту устойчивость по наследству.

После того как кусочки ДНК бактериофага попали в CRISPR-район ДНК бактерии, эта бактерия начинает делать почти то же самое, что и многоклеточный организм: со своего CRISPR-района с чужеродными фрагментами она все время транскрибирует последовательности в виде коротких молекул РНК, которые когда-то

пришли в бактериальный геном от вируса. Но присутствуют они не просто так, а уже вместе с нуклеазой Cas9.

Рассмотрим теперь, что происходит при повторном инфицировании этой бактерии тем же самым бактериофагом, кусочки которого в ней имеются. Если в бактерию проникла ДНК бактериофага, то короткая РНК способна связаться с комплементарным участком ДНК этого бактериофага, ведь она когда-то от него и произошла. И как только она это сделала, фермент Cas9, то есть нуклеаза, связанная с молекулой РНК, тут же расщепляет ДНК бактериофага и убивает врага (см. рис.7).

Эту короткую молекулу РНК, которая распознает определенный кусок генетического текста бактериофага и направляет нуклеазу на чужеродную ДНК, называют направляющей (guided) РНК.

Рис. 7. Работа CRISPR системы

ЧТО ЖЕ СЛУЧИЛОСЬ С DANONE

Мы рассмотрели, как у бактерии функционирует иммунная система, и стало понятно, что за беда приключилось у компании Danone. Обычная технология, когда в молочную массу добавляли бактериофаги, чтобы удалить посторонние бактерии, не сработала, продукты выходили испорченными. Такой результат получился оттого, что сотрудники компании регулярно применяли свои бактериофаги на одних и тех же штаммах бактерий, которые в конце концов приобрели устойчивость к данным вирусам, стали нечувствительны к ним. А это значит, что бактерии приобрели адаптивный иммунитет, но совершенно другим способом, чем человек, — без всяких антител.

Следующим важным открытием стало то, что система CRISPR/Cas9 уже известной нам бактерии Streptococcus thermophilus может эффективно работать в кишечной палочке Escherichia coli, то есть система универсальна и не видоспецифична на уровне микроорганизмов. Сообщение об этом открытии опубликовали в 2011 году коллеги из Вильнюсского института биотехнологий, который когда-то тоже входил в состав Главмикробиопрома СССР и занимался получением и очисткой различных ферментов для промышленности и научной работы.

Будущие нобелевские лауреаты 2020 года Эмманюэль Шарпантье и Дженнифер Дудна включились в изучение системы CRISPR в начале двухтысячных. Обе исследовательницы были специалистами по РНК и решили объединить свои усилия, чтобы экспериментально продемонстрировать молекулярные механизмы иммунитета бактерий на основе системы CRISPR/Cas9.

БОЛЬШАЯ РАЗНИЦА

Принципы распознавания чужеродных молекул, используемые иммунитетом многоклеточных (например, человека) и одноклеточных организмов (бактерий), совершенно различны. У людей главную роль в распознавании играют сложные белковые молекулы — антитела, а распознать они должны очень маленький, но значимый фрагмент того или иного белка — антиген. Он короткий, содержит порядка семи аминокислот и свернут в сложную трехмерную структуру. Антитело распознает не линейную последовательность и не отдельные аминокислоты, а антиген в целом, то есть и буквы, и то, в какую трехмерную структуру оказалась свернута эта линейная молекула.

А у бактерий система адаптивного иммунитета распознает не форму, а линейную структуру генетического текста. Есть последовательность вирусной ДНК, закодированная четырьмя нуклеотидами А, Г, Ц и Т, и есть направляющая РНК бактерии, которая должна просто распознать такую же последовательность в полтора десятка нуклеотидов, без всяких там форм, структур и сложного внешнего вида.

Коллеги из Вильнюса тоже

продолжали работать в этом направлении и шестого апреля 2012 года отправили в авторитетнейший журнал Cell свою статью о роли CRISPR/Cas9 в иммунном ответе бактерий. Надо сказать, что процесс публикации научных данных в сегодняшней конкурентной среде очень сильно зависит от ненаучных обстоятельств. К сожалению, через шесть дней в публикации статьи было отказано даже без проведения внешней рецензии. Редактор журнала сразу написал авторам, что статья не представляет никакого научного интереса, и даже не обратился к своим коллегам-ученым с просьбой провести экспертизу представленных данных. Двадцать первого мая 2012 года авторы направили те же материалы в другой, как сейчас бы сказали, менее пафосный журнал Proceedings of the National Academy of Sciences (Труды национальной академии наук США), который опубликовал статью четвертого сентября. Увы, Шарпантье и Дудна опережают литовский коллектив на два месяца. Свою аналогичную статью они направили в журнал Science восьмого июня, а уже двадцать восьмого июня статья была не только принята, но и опубликована.

Сегодня нам известен целый ряд важнейших принципов устройства всего живого на нашей планете. Генетический код, то есть буквенный код нашего генома, одинаков — что у человека, что у бактерии. У всех живых существ ДНК состоит из одних и тех же четырех оснований. Принцип кодирования белков один и тот же. Этим универсальным генетическим кодом написаны индивидуальные (персональные, не одинаковые) тексты. Они отличаются последовательностями нуклеотидов, но основной принцип формирования у них одинаков.

И это не просто констатация неких научных фактов. На самом деле из них следует крайне важный для человечества практический вывод. Ученые предположили, что направляющая (guided) РНК, которая распознает генетический текст у бактерии и вируса, должна столь же успешно распознавать те самые полтора десятка букв генетического текста и внутри клетки человека. А если эта РНК так же, как в бактериальной клетке, связана с ферментом Cas9-нуклеазой, то как раз в том месте молекулы ДНК, где произошло распознавание, может быть сделан разрез. В целом ряде публикаций, вышедших в 2012 году, такая возможность подвергалась сомнению. Однако научные статьи, которые появились в самом начале 2013 года, экспериментально подтвердили ее для клеток млекопитающих, в том числе человека. Фермент Cas9-нуклеаза очень точно разрежет нить ДНК именно в том месте, на которое указала направляющая РНК. Это значит, что мы можем вносить разрыв в генетический текст человека, состоящий из трех миллиардов букв, внутри клетки с исключительно большой точностью, а главное — с удивительной простотой.

В начале этой главы мы говорили об инструментах для побуквенного редактирования генетического текста. Упоминали мегануклеазы, нуклеазы типа цинковых пальцев и т. д. Все это сложные белковые молекулы, которые обычно приходится подбирать в каждом случае отдельно и синтезировать искусственно. Для того чтобы создать подобную распознающую белковую молекулу и проверить ее действие, мы должны синтезировать определенную молекулу ДНК, потом синтезировать нужный белок, затем этот белок выделить, почистить, доказать его эффективность. Требования к правильности структуры распознающих белков очень велики, и их создание — достаточно трудоемкий процесс, который занимает до полугода.

ОЛИГОНУКЛЕОТИДНЫЙ СИНТЕЗАТОР

Уже больше тридцати лет ученые имеют возможность синтезировать короткие последовательности нуклеотидов с любым порядком букв на устройстве под названием олигонуклеотидный синтезатор. Я впервые познакомился с этим чудом в конце 1980-х годов, когда работал в лаборатории Университета Джона Хопкинса в США.

Синтезатор был размером с большую микроволновую печь. Туда подвешивались десятка полтора баночек, и надо было ввести нужную комбинацию букв генетического текста (А, Т, Г, Ц). Прибор начинал завораживающе щелкать, и через пару часов у меня уже был заказанный мною и введенный по буквам фрагмент генетического текста длиной в двадцать — двадцать пять нуклеотидов.

Поделиться:
Популярные книги

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Выйду замуж за спасателя

Рам Янка
1. Спасатели
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Выйду замуж за спасателя

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Купи мне маму!

Ильина Настя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Купи мне маму!

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Наследница долины Рейн

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наследница долины Рейн

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Лекарь для захватчика

Романова Елена
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Лекарь для захватчика