Чем мир держится?
Шрифт:
Сейчас для измерения фигуры Земли и силы тяжести в ее точках используют уже не сосновые жерди десятиметровой длины, а приборы, установленные на спутниках. Сжатие Земли, например, удалось после запуска спутников определить в сотню раз точнее, чем прежними способами. Каждый спутник сам по себе — это прибор для измерения поля земного притяжения, ведь его траекторию прежде всего определяет именно это поле. Но по-прежнему в чести и совсем простые на вид приборы для определения силы тяжести, приборы самого земного характера, о которых речь пойдет в следующей главе.
Не только общие очертания фигуры Земли определяются силой тяготения и центробежной силой. Советский
Главное проявление гравитации в современной «внешней» жизни нашей планеты в том, что она удерживается Солнцем на своей орбите. Следующее, пусть не по значению, а по очевидности, — то, что мы тащим с собой вокруг Солнца собственную спутницу — Луну.
Но и Луна в свою очередь влияет на процессы, происходящие на Земле, чему доказательство — приливы и отливы. Мировой рекорд по максимальной высоте прилива более тринадцати с половиной метров делят два залива у побережья Канады. В Англии в заливе Северн высота прилива достигает тринадцати метров десяти сантиметров, во Франции в бухте Мон-Сен-Мишель— двенадцати метров шестидесяти сантиметров. Однако приливы и отливы бывают не только в океанах и морях; Луна и Солнце вызывают приливы и в земной коре. В районе экватора максимальные колебания земной поверхности по этой причине достигают примерно полуметра, а на широте Москвы до сорока сантиметров. К счастью, приливные волны в земной коре — очень длинные и очень медленные; в отличие от океанских приливов, их можно обнаружить только с помощью специальных приборов.
Однако сейчас ряд специалистов пытается связать с гравитационным воздействием Солнца и Луны… землетрясения или по крайней мере значительную их часть.
Еще в прошлом веке было замечено и подтверждено проверкой и новыми наблюдениями, что землетрясения чаще всего происходят в моменты новолуний и полнолуний, причем тогда, когда сама Луна находится вблизи перигея, то есть той точки своей орбиты, которая наиболее близка к Земле. Считать это случайностью трудно.
Сейчас многие сейсмологи отводят приливным волнам в земной коре двойную роль, обе стороны которой в равной степени неприятны для нас, землян. Во-первых, приливные волны играют роль провокаторов, они расшатывают равновесное состояние масс, слагающих земную кору, способствуют возникновению смещений этих масс и тектонических разрывов. Энергетический вклад приливных волн в эти процессы относительно очень мал, однако и «капля дробит камень не силой, но частым падением», как знали еще древние римляне. Во-вторых, когда равновесие окажется нарушенным и на большом участке планеты возникает возможность землетрясения, «та же самая» приливная волна выступает в роли спички, поджигающей здание, последней соломинки, ломающей спину верблюда.
Нет, испытывать чужое притяжение, как и притягивать самому, — вещь и для космических тел хоть и необходимая, но не безопасная.
Прослеживается связь фаз Луны и ее относительной близости к Земле с извержениями вулканов. Есть гипотеза, по которой энергия приливов в твердой оболочке Земли частично идет на подъем магмы из глубинных ее очагов к жерлам вулканов, да и вообще ближе к поверхности Земли. Не исключено, что часть энергии таких волн тратится на расплавление и превращение в магму некоторых количеств твердого вещества в земной коре.
Беспокойная соседка — эта Луна! Правда, гравитационное влияние
Сейчас ряд ученых разрабатывает гипотезы, связанные с влиянием на Землю центров тяготения, куда более отдаленных, чем Солнце. Ставится такой вопрос: случайно ли самый высокий материк нашей планеты, Антарктида, находится в районе южного полюса? Ведь сейчас наша планета обращена именно Южным своим полушарием в сторону центра Галактики. Нет ли здесь проявления некой закономерности?..
Слава маятнику
Слабость и даже, можно сказать, беспомощность самой могучей из сил нашей Вселенной легко доказываются опытом, который каждый из нас, не задумываясь особенно над выводами, успел проделать еще в раннем детстве. Крошечный магнит, извлеченный из электродвигателя игрушечного автомобильчика, поднимает целую цепочку канцелярских скрепок, небольшой гвоздь, пол-дюжины бритвенных лезвий. Поднимает — значит, одерживает победу над притяжением целой огромной планеты! Вот ведь как!
Тем поразительнее, что мы научились различать чрезвычайно мелкие колебания этой самой слабой и самой могучей силы. Причем с помощью удивительно простых приборов. Первым из них по праву должен быть назван маятник. Что на самом деле проще его?
Но нужны были гений и наблюдательность девятнадцатилетнего Галилея, чтобы заметить, что люстра в Пизанском соборе по мере уменьшения размаха своих колебаний вовсе не тратит на каждое из них все меньше и меньше времени. Именно с этого наблюдения началась не только история маятника как точного прибора, но история подлинно научного исследования гравитации. Должно было пройти еще семь лет, прежде чем Галилей проделал свои знаменитые опыты по сбрасыванию разных предметов с Пизанской башни. И с самого начала видел он глубокую связь между законами, управляющими падением тел, и законом, управляющим качаниями маятника.
Маятник стал прибором, с помощью которого установили ускорение свободного падения. Именно маятник относительно точно — куда точнее, чем геометрические измерения меридианных дуг, — показал, насколько именно Земля сплюснута у полюсов (кстати, в Лапландии экспедиция Мопертюи немало поработала и с маятниками). Свойства маятника так тесно связаны с силой тяжести, с земным тяготением, что известный немецкий физик Макс Лауэ как-то заметил: «Маятниковые часы — это не просто ящик, который вы покупаете в магазине; маятниковые часы — это тот ящик, который вы купили в магазине вместе с самой Землей. Если вы хотите передать маятниковые часы от одного наблюдателя к другому, вы должны выдать каждому из них по Земле; конечно, это довольно накладное мероприятие».
Период колебания маятника зависит от его длины и силы тяжести. И — в принципе — только от них. Выходит, зная длину маятника (а ее можно измерить, хотя тут возникают сложности, которых здесь не стоит касаться) и период колебаний (тоже поддающийся измерению), можно определить силу тяжести в любой данной точке. При этом очень важно, что вместо того, чтобы ловить доли секунды в поисках точного промежутка времени, отданного на одно колебание, можно определить, скажем, время, за которое маятник делает тысячу, десять, сто тысяч колебаний, и разделить это время на их число — так сразу многократно повышается точность наших знаний.