Цифровая стеганография
Шрифт:
Обеспечение требуемой стойкости может быть получено при переходе от детерминированных стегосистем к недетерминированным (вероятностным). Рассмотрим один из возможных вариантов построения вероятностной стегосистемы, предложенный в [2]. В рассматриваемой вероятностной стегосистеме для выполнения необходимого и достаточного условия стойкости вида H(S/C) = H(C/S) = 0 обеспечивается неизвестность для нарушителя используемого контейнера. Для этого в модель стегосистемы вводится источник контейнеров CS, характеристики которого известны нарушителю. Для встраивания скрываемых сообщений из множества CS случайно и равновероятно выберем подмножество
Необходимая неопределенность относительно С достигается выбором каждого контейнера совершенно случайным образом и сохранением выбора в тайне. Примером такого процесса может быть взятие выборок из аналогового входного сигнала, такого как речь или видео. Погрешность квантователя обеспечивает необходимую неопределенность. Если изменения контейнера в процессе встраивания информации остаются в пределах погрешности квантователя, то такая манипуляция не может быть обнаружена.
Рис. 4.2. Стегосистема с рандомизированным выбором контейнера
Определим, что для рассматриваемой вероятностной стегосистемы основное условие стойкости выражается в виде
Это означает, что неопределенность нарушителя относительно M не может быть уменьшена знанием S и CS, или M является независимым от S и CS.
Исследуем условия, при которых нарушитель не способен обнаружить изменения в контейнере, произошедшие при встраивании сообщения M с энтропией H(M), наблюдая стего. Для этого определим требуемую величину неопределенности нарушителя относительно контейнера H(C/S). Можно показать, что
При наихудшем случае противник способен полностью определить M из S и C:
Следовательно, в общем случае выполняется
Так как взаимная информация
В стойкой стегосистеме, нарушитель, наблюдая стего S, не должен получить информацию сверх той, которая ему известна априори из знания множества CS:
H(C/CS) = H(C/S), (4.16)
и, поэтому,
H(C/CS) >= H(M). (4.17)
Таким образом, для нарушителя, знающего характеристики множества CS, в стойкой стегосистеме неопределенность относительно подмножества действительных контейнеров C должна быть не меньше энтропии скрываемых сообщений.
Определим совместную энтропию H0 между множествами C и CS
H0 = H(C,CS) = H(C) + H(CS/C). (4.18)
Так как
H(CS/C) >= H(C/CS).
Для стойкой стегосистемы получим нижнюю границу величины совместной энтропии
H0 >= H(C) + H(C/CS).
Используя выражение (4.17), запишем
H0 >= H(C) + H(M). (4.19)
Так как H(CS) >= H (C), то H(CS,S) >= H(C,S). Следовательно,
H(CS,S) >= H(C,S). (4.20)
В соответствии с выражением (4.15) получим, что граница может быть определена в виде:
H(CS,S) >= H(M). (4.21)
Сформируем заключение: при достижении нижней границы для H(C/S) (уравнение 4.15), нарушитель, знающий S и CS, не способен получить доступ к скрываемому в стего S сообщению M. Фундаментальное условие стойкости (4.13) может быть выполнено.