Цифровая стеганография
Шрифт:
Детектор находит значения характеристических пикселов и сравнивает с имеющимся у него ЦВЗ. Если в изображении ЦВЗ не содержится, то в характеристических пикселах количество единиц и нулей будет примерно поровну. Авторы рассчитали значение порога принятия решения, минимизирующего вероятность ложной тревоги.
А6. Алгоритм PatchWork([13]). В основе алгоритма Patchwork лежит статистический подход. Вначале псевдослучайным образом на основе ключа выбираются два пиксела изображения. Затем значение яркости одного из них увеличивается на некоторое значение (от 1 до 5), значение яркости другого — уменьшается на то же значение. Далее этот процесс повторяется большое число раз (~10000) и находится сумма значений всех разностей. По значению этой суммы судят о наличии или отсутствии ЦВЗ в изображении.
Для пояснения работы алгоритма введем ряд обозначений. Пусть значения выбираемых на каждом шаге пикселов ai
Матожидание величины
Авторами также предложены улучшения основного алгоритма для повышения его робастности. Вместо отдельных пикселов предлагается использовать блоки, или patches. Отсюда и название алгоритма. Использование блоков различного размера может рассматриваться как формирование спектра вносимого ЦВЗ шума (шейпинг), аналогично тому, как это применяется в современных модемах. Так как наиболее вероятной модификацией стего является компрессия JPEG, то целесообразно, чтобы спектр ЦВЗ находился в области низких частот. С другой стороны, если характер возможных модификаций стего заранее неизвестен, целесообразно применение сигналов с расширенным спектром. От формы блока зависит невидимость вносимых искажений.
Алгоритм Patchwork является достаточно стойким к операциям сжатия изображения, его усечения, изменения контрастности. Основным недостатком алгоритма является его неустойчивость к афинным преобразованиям, то есть поворотам, сдвигу, масштабированию. Другой недостаток заключается в малой пропускной способности. Так, в базовой версии алгоритма для передачи 1 бита скрытого сообщения требуется 20000 пикселов.
А7.(Bender [13]). Алгоритм, основанный на копировании блоков из случайно выбранной текстурной области в другую, имеющую сходные статистические характеристики. Это приводит к появлению в изображении полностью одинаковых блоков. Эти блоки могут быть обнаружены следующим образом:
1. Анализ функции автокорреляции стегоизображения и нахождение ее пиков.
2. Сдвиг изображения в соответствии с этими пиками и вычитание изображения из его сдвинутой копии.
3. Разница в местоположениях копированных блоков должна быть близка к нулю. Поэтому можно выбрать некоторый порог и значения, меньшие этого порога по абсолютной величине, считать искомыми блоками.
Так как копии блоков идентичны, то они изменяются одинаково при преобразованиях всего изображения. Если сделать размер блоков достаточно большим, то алгоритм будет устойчивым по отношению к большинству из негеометрических искажений. В проведенных экспериментах показана робастность алгоритма к фильтрации, сжатию, поворотам изображения [13].
Основным недостатком алгоритма является исключительная сложность нахождения областей, блоки из которых могут быть заменены без заметного ухудшения качества изображения. Кроме того, в данном алгоритме в качестве контейнера могут использоваться только достаточно текстурные изображения.
Один из первых предложенных способов для проверки аутентичности изображений получил название метода проверочных сумм. Согласно этому методу отбирались семь старших бит восьми близлежащих пикселов. Получалось 56-битное слово. Выполнив эту операцию для всего изображения, имели N × N/8 таких слов, где N × N — число пикселов в изображении. Затем они поразрядно складывались по модулю два, то есть вычислялась проверочная сумма длиной 56 бит. Эта сумма записывалась в младшие значащие биты выбранных в соответствии с ключом пикселов. В детекторе осуществлялась проверка этих бит, получившаяся проверочная сумма сравнивалась с
Большинство предложенных алгоритмов встраивания ЦВЗ в пространственную область изображений основаны на использовании широкополосных сигналов (ШПС). Этот метод хорошо зарекомендовал себя в радиосвязи, при передаче узкополосных сигналов по каналам с шумами. Основной идеей применения ШПС в стеганографии является то, что данные внедряются в шумовой сигнал малой мощности. Так как сигнал малой мощности, то для защиты ЦВЗ применяют помехоустойчивые коды. Рассмотрим пример.
А8. (Marvel[14]). Стегокодер с применением ШПС изображен на рис. 5.7. Скрываемое сообщение шифруется на ключе k1 и кодируется помехоустойчивым кодом, в результате чего получается кодированное сообщение m. Это сообщение модулируется псевдослучайной последовательностью с выхода генератора, начальное заполнение которого равно k2. Получившийся сигнал с расширенным спектром подвергается перестановкам в соответствии с ключом k3 и складывается с изображением-контейнером. В декодере выполняются обратные операции. В качестве детектора ЦВЗ используют кореляционный приемник (см. гл.1).
Рис. 5.7. Стегокодер на основе ШПС
В качестве датчика псевдослучайной последовательности чаще всего предлагается использовать генератор M — последовательности в силу хороших корреляционных свойств этой последовательности.
5.3. Скрытие данных в области преобразования
5.3.1. Выбор преобразования для скрытия данных
В большинстве методов скрытия данных в изображениях используется та или иная декомпозиция изображения — контейнера. Среди всех линейных ортогональных преобразований наибольшую популярность в стеганографии получили вейвлет-преобразование и ДКП, что отчасти объясняется их успешным применением при сжатии изображений. Кроме того, желательно применять для скрытия данных то же преобразование изображения, как и то, котоорому оно подвергнется при возможном дальнейшем сжатии. В стандарте JPEG используется ДКП, а в JPEG2000 — вейвлет-преобразование. Стегоалгоритм может быть весьма робастным к дальнейшей компрессии изображения, если он будет учитывать особенности алгоритма сжатия. При этом, конечно стегоалгоритм, использующий ДКП, вовсе не обязательно будет робастным по отношению к вейвлетному алгоритму сжатию. Стегоалгоритм, использующий вейвлеты, может быть неробастным к сжатию с применением ДКП. Еще большие трудности с выбором преобразования при скрытии данных в видеопоследовательности. Причина заключается в том, что при сжатии видео основную роль играет кодирование векторов компенсации движения, а не только неподвижного кадра. Робастный стегоалгоритм должен каким-то образом учитывать это.
Возникает следующий вопрос: существует ли робастное преобразование, независимое от применяемого далее алгоритма сжатия? В работе [15] с позиций теории информации рассмотрены различные ортонормальные преобразования, такие как ДПФ, ДКП, Хартли, субполосное преобразование.
Известно много моделей для оценки пропускной способности канала скрытия данных. Так, в работе [16] представлена следующая модель.
Пусть S0 – исходное изображение (контейнер), W — вложение. Тогда модифицированное изображение