Цифровая стеганография
Шрифт:
Встраивание ЦВЗ в небольшие по размеру блоки имеет то преимущество, что при этом существует возможность адаптации к локальной яркости и гладкости изображения. Однако при достаточной энергии ЦВЗ появляется артефакт блочности, также как и при высокой степени сжатия в стандарте JPEG. Перекрывающееся ортогональное преобразование (ПОП) изначально было предложено для преодоления недостатка ДКП при сжатии изображений. В работе [25] предложено его использование для внедрения информации. Чтобы увеличить робастность алгоритма вложения, авторы предложили дополнительно встраивать некий шаблон, причем этот процесс происходит в области преобразования Фурье. В результате получился алгоритм, достаточно стойкий ко многим атакам.
6. ОБЗОР СТЕГОАЛГОРИТМОВ ВСТРАИВАНИЯ ИНФОРМАЦИИ В ИЗОБРАЖЕНИЯ
По
6.1. Аддитивные алгоритмы
6.1.1. Обзор алгоритмов на основе линейного встраивания данных
В аддитивных методах внедрения ЦВЗ представляет собой последовательность чисел wi длины N, которая внедряется в выбранное подмножество отсчетов исходного изображения f. Основное и наиболее часто используемое выражение для встраивания информации в этом случае
где
Другой способ встраивания водяного знака был предложен И.Коксом [11]:
или, при использовании логарифмов коэффициентов
При встраивании в соответствии с (6.1) ЦВЗ в декодере находится следующим образом:
Здесь под f* понимаются отсчеты полученного изображения, содержащего или не содержащего ЦВЗ w. После извлечения
Эта величина варьируется в интервале [-1; 1]. Значения, близкие к единице, свидетельствуют о том, что извлеченная последовательность с большой вероятностью может соответствовать встроенному ЦВЗ. Следовательно, в этом случае делается заключение, что анализируемое изображение содержит
В декодере может быть установлен некоторый порог,
Для увеличения робастности внедрения во многих алгоритмах применяются широкополосные сигналы. При этом информационные биты могут быть многократно повторены, закодированы с применением корректирующего кода, либо к ним может быть применено какое-либо другое преобразование, после чего они модулируются с помощью псевдослучайной гауссовской последовательности. Такая последовательность является хорошей моделью шума, присутствующего в реальных изображений. В то же время синтетические изображения (созданные на компьютере) не содержат шумов, и в них труднее незаметно встроить такую последовательность.
Обычно легче первоначально сгенерировать равномерно распределенную последовательность. Известен алгоритм преобразования такой последовательности в гауссовскую (алгоритм Бокса-Мюллера). Псевдокод этого алгоритма приведен ниже. Здесь ranf — датчик равномерно распределенных случайных чисел, mean, deviation — среднее значение и СКО последовательности.
Алгоритм 6.1. Полярная форма алгоритма Бокса-Мюллера
Для извлечения внедренной информации в аддитивной схеме встраивания ЦВЗ обычно необходимо иметь исходное изображение, что достаточно сильно ограничивает область применения подобных методов.
Рядом авторов [22, 4, 34] были предложены слепые методы извлечения ЦВЗ, вычисляющие корреляцию последовательности w со всеми N коэффициентами полученного изображения f*:
Затем полученное значение коэффициента корреляции
Основным недостатком этого метода является то, что само изображение в этом случае рассматривается, как шумовой сигнал. Существует гибридный подход (полуслепые схемы), когда часть информации об исходном изображении доступно в ходе извлечения информации, но неизвестно собственно исходное изображение.
Корреляционный метод позволяет только обнаружить наличие или отсутствие ЦВЗ. Для получения же всех информационных битов нужно протестировать все возможные последовательности, что является крайне вычислительно сложной задачей.