Чтение онлайн

на главную - закладки

Жанры

Шрифт:

А численный эксперимент, даже на современных компьютерах, совершенно не позволяет приблизиться к каким-то реальным вещам. То есть, например, описать процесс того, как я сейчас взмахнул очками в воздухе, промоделировать это на компьютере невозможно. Не хватит никаких мощностей.

А.Г. То есть только идеальный профиль в идеальной среде.

В.З. Ну, в идеальной среде, но, тем не менее, все равно там остаются турбулентные следы, которые компьютером не моделируются.

Мы понимаем теперь, что такое прямой каскад – это уход энергии за пределы системы в системе, где нет никаких правил игры. Иными словами, нет никаких дополнительных законов сохранения.

А теперь представьте себе такую вещь.

Представьте себе, что есть правила игры и запрещено убивать. Запрещено убивать, но можно обыгрывать в карты. И, скажем, собираются четверо и играют в карты. Один выиграл, остальные проиграли. Тогда по-прежнему будет накопление, появление богатых, которые будут потом исчезать, но одновременно будет накопление и нищих. Обыгранных, которых нельзя убивать. И поэтому возникнет накопление нищих, бедных, то есть волн с малой энергией. А волны с малой энергией имеют малое волновое число, то есть большую длину – будут возникать большие масштабы. И если в классической картине турбулентности есть только прямой каскад, когда из больших масштабов появляются мелкие, то в турбулентности, в которой есть дополнительный закон сохранения (в данном случае запрещающий убийство), там будут появляться также большие масштабы. В основном, надо сказать, основная масса людей будет превращаться в нищих. Это и есть обратный каскад, который открыли мы с Филоненко.

А.Г. То есть получается, что длинная волна отдает свою энергию?

В.З. В гидродинамической турбулентности большой масштаб отдает свою энергию мелким масштабам. Большой вихрь превращается в мелкие вихри и так далее, и так далее. Если же есть дополнительный закон сохранения, какой бы он ни был, тогда происходит обратный процесс – из коротких масштабов появляются длинные. В частности, образование длинных волн во время шторма – это как раз совершенно классический пример обратного каскада. Там есть некий дополнительный закон сохранения, хотя он почти невидим, он довольно глубоко скрыт. Это закон сохранения волнового действия. Этот обратный каскад и приводит к тому, что появляются длинные волны. Когда начинается шторм, то в начале есть только короткие волны.

Наверное, вы все это наблюдали: вы стоите на берегу, начинается ветер. Сначала появляются только короткие волны, потом они становятся длиннее, длиннее, длиннее, длиннее. Это и есть накопление волн с малой энергией, потому что при данном числе волн, энергия будет пропорциональна частоте, а у длинных волн и частота меньше – в этом дело. Поэтому этот обратный каскад есть явление интересное, и оно осуществляется в двумерной турбулентности.

То, что мы сейчас видим – это классическая волновая турбулентность. Здесь есть прямой каскад и обратный. Прямой каскад – это появление ряби. Если вы посмотрите на картины всех художников-маринистов, которые рисуют волны, вы увидите, что на этих волнах прорисована обязательно мелкая рябь. Это появление ряби и есть прямой каскад. Эта рябь, так сказать, ведет энергию в область больших волновых чисел к диссипации. Она является слугой второго начала термодинамики. Потому что второе начало термодинамики стремится эту энергию диссипировать, уничтожить, распределить между молекулами, превратить в тепло. Но есть законы, запрещающие это. Это преобразования ряби можно сделать только в мелких масштабах. Но поскольку здесь есть дополнительный закон сохранения, несущая длина волны автоматически удлиняется, и возникают все более и более длинные волны.

Каскад – это совершенно универсальное явление, в любом типе турбулентности всегда есть каскад.

А.Г. И в вихревом, и в волновом?

В.З. И в вихревом, и в волновом. В случае вихревой турбулентности есть вопрос, который до сих пор не имеет ответа – где этот каскад, как эта диссипация энергии распределена в пространстве? То есть, является ли она более или менее равномерной во всем объеме, либо наоборот – возникают какие-то маленькие

зоны, где энергия главным образом и диссипирует. Колмогоров утверждал (хотя вряд ли он ясно себе это представлял, но неявным образом в его теории заключена такая идея), что это происходит равномерно. Тогда этот вопрос не задавали еще, но если бы его спросили, он бы, наверное, так и ответил, что «да, происходит равномерное распределение». Если, скажем, нарисовать диссипирующую энергию в виде светящейся материи, то это будет равномерное покрытие, распределение. А альтернативная точка зрения, что наоборот будут происходить отдельные вспышки, в которых диссипирует энергия.

Но как на самом деле – никто не знает. И этот вопрос настолько важен, что сейчас установлена премия в миллион долларов тому, кто его решит. Он переформулирован на математическом языке как вопрос о существовании особенностей в уравнении Навье-Стокса. Потому что если есть такая особенность, то это как раз и есть место, где происходит диссипация энергии. Множество народу стремится его решить. Этот вопрос является одной из десяти проблем, за которую в математике назначена такая награда. Уже года 3 как произошло, но пока она никому не вручена.

Так что волновая турбулентность значительно проще, вихревая турбулентность – гораздо более трудная проблема. И в ней действительно на эти вопросы нет пока ответа. Это связано с проблемой коллапса в гидродинамике, то есть с вопросом о возникновении особенностей: могут ли возникать такие точки, в которых завихренность обращается в бесконечность. Это вопрос открытый и чрезвычайно важный. Есть много соображений, но пока окончательно вопрос не решен. Кроме того, стоит проблема чрезвычайно трудного численного счета.

А.Г. То есть там возникает сингулярность…

В.З. Да, возникает сингулярность или нет – это вопрос, на который в области изучения вихревой турбулентности нет ответа. А в волновой турбулентности, к счастью, все значительно проще. Там можно построить замкнутую математическую теорию. И спектры, определяющие каскады энергии, найти аналитически точно, показать, что они суть точные решения неопределенных уравнений, исследовать потом их устойчивость, сравнить с экспериментом. Это все сделано и это, конечно, очень существенное достижение. Там тоже бывают сингулярности. Скажем, в этих волнах, которые мы видим, возникает волна очень большой амплитуды. Я думаю, это какая-нибудь волна из тех, что называется «freakwaves», «странные волны», которые иногда возникают. Это тоже совершенно открытый вопрос. О нем я чуть позже скажу.

Если вы посмотрите на море, скажем, при достаточно малой скорости ветра, грубо говоря, 6 метров в секунду (если скорость меньше 6-ти метров в секунду, то море гладкое, и на нем никаких барашков нет). А когда скорость ветра увеличивается, на море начинают появляться отдельные белые зоны, это зоны, в которых уже происходит переход от слабой турбулентности к сильной, то есть возникают эти опрокидывания волн, и в нем, конечно, локально очень большая диссипация. То есть на поверхности жидкости диссипация несомненно распределена неравномерно, распределена в отдельных случайных точках. Когда потом скорость увеличивается, они постепенно заполняют все море, но все равно это распределение весьма и весьма неоднородное и случайное.

Здесь это, по крайней мере, видно и можно построить теорию всего этого дела. А для вихревой турбулентности этот вопрос остается открытым.

А.Г. Вы хотели рассказать о девятом вале.

В.З. Девятый вал – это действительно совершенно разумный вопрос. Потому что если вы посмотрите запись волн в таком достаточно стандартном волнении, то увидите, что волны не равны друг другу, они разные – есть распределение. Период этого распределения более или менее известен, он связан с тем, что строго периодическая волна неустойчива, она из себя рождает модуляцию. Это и есть так называемая модуляционная неустойчивость.

Поделиться:
Популярные книги

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Коллектив авторов
Warhammer Fantasy Battles
Фантастика:
фэнтези
5.00
рейтинг книги
Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Мы все умрём. Но это не точно

Aris me
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
Мы все умрём. Но это не точно

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Подари мне крылья. 2 часть

Ских Рина
Любовные романы:
любовно-фантастические романы
5.33
рейтинг книги
Подари мне крылья. 2 часть

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Мир Возможностей

Бондаренко Андрей Евгеньевич
1. Мир Возможностей
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Мир Возможностей

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я