Эксперт № 40 (2013)
Шрифт:
Изобретатель современных аккумуляторных батарей Акира Йосино считает, что уже в ближайшее время они станут сверхкомпактными и мощными, а привычные автомобили с ДВС вытеснят электромобили, зарядить которые можно будет прямо во время поездки
Рисунок: Константин Батынков
Акира Йосино — выдающийся изобретатель, химик, генеральный директор компании Yoshino Laboratory, входящей в состав японской Asahi Kasei Corp. С начала 1980-х он работает в области литий-ионных технологий аккумулирования энергии. Коммерциализация его разработок, совпавшая с IT- и телекоммуникационным бумом 1990-х, по сути, совершила технологическую революцию, приведя к уменьшению размеров и веса большинства портативных устройств — от видеокамер и мобильных телефонов до ноутбуков и планшетных компьютеров. А изыскания, которые сейчас ведутся под руководством Акиры Йосино, подталкивают
— Доктор Йосино, как люди оказываются в науке? Как это было в вашем случае?
— Не поверите, но что касается меня, у меня в руках случайно оказалась книга Майкла Фарадея «История свечи». В свое время Фарадей прочитал несколько лекций для детей, в которых рассказывал о различных законах природы, с которыми связано горение свечи — они и вошли в книгу. Там на понятном ребенку языке говорится, почему горит свеча, почему мы видим ее свечение, почему появляются блики разных цветов. Книга эта тогда доставила мне огромное удовольствие, показав, что многие секреты природы можно раскрыть, и уже двенадцатилетним мальчишкой я сам мечтал открывать тайны природы, стал прилежнее заниматься в школе, чтобы потом поступить в университет.
— Но изначально ваша специальность была далека от всего, что связано с электричеством и электротехникой, и по окончании университета ни о каких батарейках вы не помышляли.
— Так и есть. В 1972 году я окончил кафедру органической химии в Университете Киото и поступил в корпорацию Asahi Kasei. Это многоотраслевой холдинг (его годовой оборот — около 20 млрд долларов в год. — « Эксперт» ), здесь разрабатывают, производят и продают различную химическую продукцию. Чем только не занимается компания: строительными и конструкционными материалами, электронными компонентами, химическим и искусственным волокном и нитями, тканями и неткаными материалами, было даже собственное фармацевтическое подразделение. Еще какие-то отделы, вероятно, появлялись или исчезали, уже когда я работал в компании. Важнее, однако, другое: там было одно подразделение, которое ведало только бизнесом, и другое — самостоятельный исследовательский блок Лаборатория Кавасаки, куда я и попал работать. Здесь занимались исследованием материалов и всяких химических процессов, поэтому для меня было совершенно логично, окончив отделение органической химии, в итоге поступить на работу именно в эту лабораторию. Там мне была определена тема, по которой обычно работают несколько только поступивших на должность исследователя выпускников университета. Вот с этого все началось. И затем — опять-таки совершенно обычная практика для этой лаборатории, — если молодые ученые сразу не нашли себя в тех или иных направлениях исследований или они им стали неинтересны, их могут перекинуть на другие темы, они могут попробовать себя в других сферах деятельности. И тема, которая привела к батарейкам, для меня была, кстати, уже четвертой, которой я занимался в этой лаборатории.
— Вы именно о литий- ионных батарейках говорите?
— Я начал заниматься полиацетиленом, который мог бы использоваться в литий-ионных батареях в качестве катодного материала. Было это где-то в 1981 году.
— Почему в истории с литий- ионными батареями этот углеродистый полимер оказывается так важен?
—
— А разработка аккумуляторов на безводной основе застопорилась?
— Если разработка первичных элементов с литиевым анодом увенчалась сравнительно быстрым успехом и такие элементы прочно заняли свое место как источники питания портативной техники, то создание безводных литий-ионных аккумуляторов натолкнулось на принципиальные трудности — на их преодоление потребовалось более двадцати лет. На создание такой батареи у меня лично ушло в итоге почти пятнадцать лет.
Как я уже говорил, я начал заниматься полиацетиленом, который мог использоваться в таких батареях в качестве катодного материала, примерно в 1981 году. Тогда стало ясно, что этот углеродистый материал оказался весьма удобной матрицей для интеркаляции, вкрапления, ионов лития (при разряде такого аккумулятора происходит деинтеркаляция ионов лития из углеродного материала, а во время зарядки — интеркаляция, ионы как бы заполняют ячейки углеродистого материала. — « Эксперт» ). Но скоро я понял, что, хотя полиацетиленовая ячейка вполне функциональна, ее низкая реальная плотность ограничивает доступный энергетический потенциал батареи, к тому же химическая стабильность материала оказалась ограниченной. Поэтому для применения в качестве отрицательного электрода я изучил пригодность нескольких других углеродистых материалов. И обнаружил, что некоторые из них, с определенной кристаллической структурой нанометровой величины — углеродные волокна, выращенные из паровой фазы моими коллегами Оберлином, Эндо и Коямой за несколько лет до этого, могут обеспечивать большую мощность батареи в целом.
Акира Йосино уверен, что беспроводная передача электроэнергии станет следующим технологическим прорывом
Фото: Александр Крупнов
— Когда вы почувствовали, что находитесь на пороге успеха?
— Приемлемую аккумуляторную батарею я изготовил уже в 1985 году, когда понял, из какого материала нужно делать анодную часть литий-ионной батареи. На этот раз мне помогла в этом работа американского ученого из Техасского университета Джона Гуденофа. Еще в 1980-м он опубликовал в журнале Material Research Bulletin статью, в которой описал свойства LiCoO sub 2 /sub в качестве возможного анодного материала для вторичной батареи. А ученые Ядзами и Тузаин провели первые удачные эксперименты по интеркаляции ионов лития из литированных оксидов кобальта в углеродный материал.