Чтение онлайн

на главную - закладки

Жанры

Это база: Зачем нужна математика в повседневной жизни
Шрифт:

Например, в 1736 году великий математик Леонард Эйлер обратился к забавной небольшой головоломке, связанной с кёнигсбергскими мостами. Он заинтересовался ею потому, что она, похоже, требовала геометрии нового типа, которая меняла обычные представления о длинах и углах. Но он никак не мог предвидеть, что в XXI веке предмет, начало которому положило его решение, поможет множеству пациентов найти почку для пересадки и тем самым сохранить жизнь. Для начала отметим, что даже идея пересадки почки показалась бы в то время чистой фантазией, а если и нет, то связь ее с той головоломкой точно выглядела бы нелепицей.

И кто мог бы вообразить, что открытие заполняющих пространство кривых – кривых, проходящих через каждую точку заполненного квадрата, – сможет помочь программе Meals on Wheels планировать маршруты доставки? Точно не математики, которые изучали эти вопросы в 1890-е годы и которых интересовало, как можно определить такие заумные концепции, как «непрерывность» и «измерение». Кстати, поначалу им пришлось объяснять, почему дорогие их сердцу

математические представления могут оказаться ошибочными. Многие коллеги тогда осуждали все это мероприятие как ошибочное и вредное. Со временем все поняли, что бесполезно жить в блаженном неведении и считать, что все будет замечательно работать, если на самом деле не будет.

Не только математика прошлого используется таким образом. Методы трансплантации почки опираются на многочисленные современные расширения первоначального озарения Эйлера, к которым относятся, в частности, алгоритмы комбинаторной оптимизации, позволяющие делать наилучший выбор из громадного спектра возможностей. Среди множества математических методов, используемых в компьютерной анимации, немало таких, которым от роду насчитывается с десяток лет, а то и меньше. В качестве примера можно привести «пространство форм» [1] – пространство бесконечной размерности, состоящее из кривых, которые считаются одной и той же кривой, если различаются только координатами. С их помощью анимационные последовательности становятся более гладкими и естественными на вид. Вездесущая гомология – еще одно недавнее изобретение – появилась в результате того, что специалисты по чистой математике хотели вычислять сложные топологические инварианты, которые подсчитывают число многомерных отверстий в геометрических фигурах. Помимо прочего, их метод позволил сетям датчиков сигнализации обеспечивать полное покрытие территории при защите зданий или военных баз от вторжения. Абстрактные концепции из алгебраической геометрии – «суперсингулярные изогенные графы» – могут сохранять безопасность интернет-коммуникаций, даже когда для взлома начнут применяться квантовые компьютеры. Эти устройства настолько новы, что существуют пока только в рудиментарном виде, но они разнесут современные криптосистемы в пух и прах, если удастся полностью реализовать их потенциал.

1

Термин введен британским статистиком Дэвидом Кендаллом. Другое название – «пространство неряшливости» – используется специалистами по автоматическому распознаванию рукописного текста. – Прим. науч. ред.

Математика не просто время от времени преподносит нам подобные сюрпризы. Это уже стало для нее обыкновением. Мало того, с точки зрения многих математиков, эти сюрпризы и есть самые интересные варианты применения их дисциплины – и главное основание для того, чтобы считать математику именно дисциплиной, а не разрозненным набором фокусов, индивидуальным для каждого типа задач.

По словам Вигнера, «чрезвычайная эффективность математики в естественных науках есть нечто загадочное, не поддающееся рациональному объяснению». Конечно, это правда, что математика выросла в первую очередь из физических задач, но Вигнера удивляла вовсе не эффективность дисциплины в тех областях, для которых она была разработана. Его ставила в тупик эффективность математики в областях, никак на первый взгляд с нею не связанных. Дифференциальное и интегральное исчисление выросло из исследований Исаака Ньютона, посвященных движению планет, поэтому не особенно удивительно, что оно помогает понять, как движутся планеты. Удивительно, однако, то, что дифференциальное исчисление позволяет осуществлять статистическую оценку народонаселения, как в маленьком примере Вигнера, объяснять изменения количества рыбы, выловленной в Адриатическом море во время Первой мировой войны {4} , управлять ценообразованием опционов в финансовом секторе, помогать инженерам конструировать пассажирские самолеты или быть жизненно важным для телекоммуникаций. И все потому, что дифференциальное исчисление изначально не предназначалось ни для одной из перечисленных целей.

4

Вито Вольтерра был математиком и физиком. В 1926 году за его дочерью ухаживал морской биолог Умберто Д'Анкона, и позже они поженились. Д'Анкона обнаружил, что во время Первой мировой войны доля хищной рыбы (акула, скат, рыба-меч), вылавливаемой рыбаками, повысилась несмотря на то, что в целом рыболовство захирело. Вольтерра создал на основе дифференциального исчисления простую модель того, как меняется со временем численность хищников и добычи, из которой следовало, что система переживает повторяющиеся циклы, где взлеты численности хищников чередуются с обвалами численности добычи. Главное, что в среднем численность хищников увеличивается пропорционально сильнее, чем численность добычи.

Вигнер был прав. То, как математика раз за разом появляется без приглашения в физике, а также в большинстве других областей человеческой деятельности – настоящая загадка. В соответствии с одним из предположений, Вселенная «состоит» из математики и люди всего лишь

понемногу открывают для себя этот основной ее элемент. Я не собираюсь с этим спорить, но, если такое объяснение верно, оно заменяет одну загадку на другую, еще более глубокую. Почему наша Вселенная состоит из математики?

* * *

На более прагматичном уровне можно утверждать, что математика обладает рядом свойств, которые помогают ей стать непостижимо эффективной по Вигнеру. Я согласен, что одно из них – ее многочисленные связи с естественными науками, которые приносят в мир человека преобразующие технологии. Многие великие математические инновации в самом деле родились в процессе естественно-научных исследований. Другие уходят корнями в потребности человека. Появление цифр обусловила потребность ведения хозяйственного учета (сколько у меня овец?). Геометрия означает «измерение земли» и изначально была тесно связана с налогообложением земель, а в Древнем Египте еще и со строительством пирамид. Тригонометрия возникла из астрономии, навигации и картографии.

Однако этого мало для адекватного объяснения, потому как другие великие математические инновации связаны не с естественно-научными исследованиями или потребностями людей. Простые числа, комплексные числа, абстрактная алгебра, топология – главной мотивацией для открытия/изобретения подобных инструментов было человеческое любопытство и ощущение закономерности. Это вторая причина, по которой математика так эффективна: математики используют ее для поиска закономерностей и выявления внутренней структуры. Они ищут красоту, красоту не формы, а логики. Ньютону, пытавшемуся понять движение планет, решение пришло, когда он стал думать как математик и искать более глубокие закономерности в груде необработанных астрономических данных. Тогда-то он и предложил свой закон всемирного тяготения {5} . Многие величайшие математические идеи вообще не связаны с реальным миром. Пьер де Ферма, юрист и математик-любитель XVII века, сделал ряд фундаментальных открытий в теории чисел: открыл глубокие закономерности в поведении обычных целых чисел. Потребовалось три столетия, чтобы его работы в этой области нашли практическое применение, но сегодня без них были бы невозможны коммерческие транзакции, которые являются движущей силой интернета.

5

Несомненно, Ньютон пользовался также физической интуицией, и историки сообщают нам, что он, вероятно, позаимствовал идею у Роберта Гука, но ограниченность и узкая специализация еще никому не шли на пользу.

Еще одно свойство математики, которое с конца XIX века становится все более очевидным, это общность. У различных математических структур много общего. В элементарной алгебре действуют такие же правила, что и в арифметике. Все виды геометрии (евклидова, проективная, неевклидова и даже топология) тесно связаны друг с другом. Это скрытое единство можно сделать явным, если с самого начала работать с обобщенными структурами, которые подчиняются конкретным правилам. Достаточно разобраться в общих принципах, и все конкретные примеры станут очевидными. Это позволяет сберечь немало сил, которые иначе расходовались бы понапрасну – ведь пришлось бы делать, по существу, одно и то же много раз с использованием незначительно различающихся языков. Однако у такого подхода есть один недостаток: как правило, он делает дисциплину более абстрактной. Вместо того чтобы говорить о знакомых вещах, таких как числа, обобщенный подход имеет дело с чем-то, подчиняющимся тем же правилам, что и числа, а называться это может, например, «нётерово кольцо», «тензорная категория» или «топологическое векторное пространство». Когда абстракции такого рода доводятся до крайности, трудно понять, что эти общности собой представляют, не говоря уже о том, как их использовать. Тем не менее они настолько полезны, что наш мир уже не смог бы без них функционировать. Хотите Netflix? Кто-то должен произвести математический расчет. Это не волшебство, это только кажется волшебством.

Четвертое свойство математики, очень важное для нашего рассказа, – возможность ее переноса. Это следствие ее общности и причина, по которой необходима такая высокая степень абстракции. Безотносительно задачи, давшей повод для разработки, любая математическая концепция или метод обладает таким уровнем общности, который делает его применимым для решения совершенно других задач. В результате любая задача, которую можно переформулировать и уложить в подходящие рамки, становится решаемой. Простейший и самый эффективный способ создания переносимой математики – заложить возможность переноса в проект с самого начала, сделав общность явной.

Последние 2000 лет математика черпает вдохновение из трех основных источников: процессов в природе, потребностей общества и склонности к поиску закономерностей, свойственной человеческому разуму. На этих трех столпах держится все здание. Настоящее чудо, что, несмотря на многообразие мотиваций, математика полностью едина. Каждая ее отрасль, каковы бы ни были ее истоки и цели, тесно связана с остальными отраслями, и эти взаимосвязи становятся все более прочными и все более сложными.

Поделиться:
Популярные книги

Ринсвинд и Плоский мир

Пратчетт Терри Дэвид Джон
Плоский мир
Фантастика:
фэнтези
7.57
рейтинг книги
Ринсвинд и Плоский мир

Мастер ветров и закатов

Фрай Макс
1. Сновидения Ехо
Фантастика:
фэнтези
8.38
рейтинг книги
Мастер ветров и закатов

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Гимназистка. Клановые игры

Вонсович Бронислава Антоновна
1. Ильинск
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Гимназистка. Клановые игры

Весь Роберт Маккаммон в одном томе. Компиляция

МакКаммон Роберт Рик
Абсолют
Фантастика:
боевая фантастика
5.00
рейтинг книги
Весь Роберт Маккаммон в одном томе. Компиляция

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Буревестник. Трилогия

Сейтимбетов Самат Айдосович
Фантастика:
боевая фантастика
5.00
рейтинг книги
Буревестник. Трилогия

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4