Чтение онлайн

на главную - закладки

Жанры

Это база: Зачем нужна математика в повседневной жизни
Шрифт:

Предположим, например, что основную поддержку политическая партия получает в прибрежных районах. Включение всех живущих там избирателей в один округ приведет к тому, что округ получится длинным, узким и извилистым и будет тянуться вдоль всего побережья. Это совершенно неестественно в сравнении с остальными компактными и разумными по форме округами. Нетрудно прийти к выводу, что здесь происходит что-то подозрительное, а границы проведены так, чтобы сделать бесполезными как можно больше голосов избирателей этой партии. Странная форма перекроенных избирательных округов часто свидетельствует о манипуляциях, как это было в случае необычного округа губернатора Джерри.

Правоведы могут спорить до умопомрачения о том, какую именно форму следует считать странной. Поэтому в 1991 году юристы Дэниел Полсби и Роберт Поппер предложили способ количественной оценки необычности формы, известный сегодня как тест Полсби – Поппера {8} . Он вычисляется по формуле:

4? x площадь округа/квадрат периметра округа.

Человек, хоть немного

знакомый с математикой, сразу обратит внимание на множитель 4?. Подобно приятелю Вигнера, который не понимал, как численность населения связана с окружностями, мы можем спросить, какое отношение окружности имеют к политическим играм с избирательными округами. Ответ необычайно прост и прямолинеен: круг – самая компактная из геометрических фигур.

8

В 1927 году Э. Кокс использовал эту же величину в палеонтологии для оценки округлости песчинок; это позволяет отличить песок, образовавшийся в результате выветривания, от песка, обкатанного водой, и определить условия окружающей среды в доисторические времена. См.: E. P. Cox. "A method of assigning numerical and percentage values to the degree of roundness of sand grains", The Journal of Paleontology 1 (1927) 179–183. В 1966 году Джозеф Шварцберг предложил использовать отношение периметра округа к длине окружности той же площади. Эта величина обратна корню квадратному из оценки Полсби – Поппера, так что она ранжирует округа точно так же, хотя и с другими числами. См.: J. E. Schwartzberg. "Reapportionment, gerrymanders, and the notion of 'compactness'", Minnesota Law Review 50 (1966) 443–452.

Этот факт имеет давнюю историю. Согласно древнегреческим и древнеримским источникам, а именно поэме Вергилия «Энеида» и «Филипповой истории» Гнея Помпея Трога, основательницей города-государства Карфагена была царица Дидона. Историческое повествование Трога кратко пересказал Юниан Юстин в III веке, и в его рассказе мы находим поразительную легенду. Дидона и ее брат Пигмалион были наследниками неназванного царя города Тира. После смерти царя народ хотел, чтобы им правил Пигмалион, несмотря на юный возраст. Дидона вышла замуж за своего дядю Акербаса, который, по слухам, обладал несметными сокровищами. Пигмалион захотел получить эти сокровища, а потому убил Акербаса. Дидона сделала вид, что выбросила его сокровища в море, хотя на самом деле утопила просто мешки с песком. Опасаясь, вполне разумно, гнева Пигмалиона, она бежала сначала на Кипр, а затем на северное побережье Африки. Там Дидона обратилась к берберскому царю Ярбу с просьбой выделить небольшой участок земли, где она могла бы пожить какое-то время. Тот ответил, что разрешает ей забрать себе столько земли, сколько удастся окружить бычьей шкурой. Дидона разрезала шкуру на тонкие полоски и охватила ими близлежащий холм, который до сего дня носит название Бирса, что значит «шкура». Основанное там поселение стало городом Карфагеном, и, когда он вырос и разбогател, Ярб сказал Дидоне, что она должна выйти за него замуж – или ее город будет разрушен. Дидона принесла множество жертв на громадном костре, сделав вид, что хочет почтить таким образом своего первого мужа и подготовиться к браку с Ярбом, затем взошла на костер, сказала, что скорее присоединится к первому мужу, чем уступит притязаниям Ярба, и пронзила себя мечом.

Мы не знаем, существовала ли Дидона на самом деле (хотя Пигмалион определенно существовал, и в некоторых источниках наряду с ним упоминается и Дидона). Поэтому говорить об исторической точности этой легенды бессмысленно. Как бы то ни было, в исторической легенде кроется легенда математическая: Дидона использовала шкуру, чтобы окружить холм, выложить из ремешков окружность вокруг него. Почему окружность? Потому что – как утверждают математики – она знала, что именно окружность охватывает максимально большую площадь для заданного периметра {9} . Этот факт носит впечатляющее название «изопериметрическое неравенство». Он был известен еще в Древней Греции, но строгое доказательство получил только в 1879 году, когда математик Карл Вейерштрасс заполнил пробел в пяти различных доказательствах, опубликованных геометром Якобом Штейнером. Штейнер доказал, что если оптимальная фигура существует, то это должна быть окружность, но он не сумел доказать ее существование {10} .

9

Заключив в окружность холм, то есть искривленную поверхность, она сумела втиснуть в свой круг еще большую площадь.

10

V. Blasjo. "The isoperimetric problem", American Mathematical Monthly 112 (2005) 526–566.

Изопериметрическое неравенство гласит, что

квадрат периметра больше или равен 4? x площадь.

Это применимо к любой плоской геометрической фигуре, у которой есть периметр и площадь. Более того, постоянная 4? – наилучшая из возможных (ее невозможно сделать больше), и вариант «больше или равно» превращается в равенство только в том случае, когда фигура – круг {11} . Именно изопериметрическое неравенство навело Полсби и Поппера на мысль о том, что величина, которую я назвал тестом Полсби – Поппера (ПП), может служить эффективным способом оценки округлости геометрической фигуры. Вот несколько примеров:

11

Для

окружности радиуса r

длина окружности (= периметру) = 2?r,

площадь круга = ?r2,

периметр2 = (2?r)2 = 4?2r2 = 4?(?r2) = 4? x площадь.

Круг: ПП = 1;

Квадрат: ПП = 0,78;

Равносторонний треугольник: ПП = 0,6.

Для избирательного округа по Джерри ПП составляет примерно 0,25.

Однако у ПП есть серьезные недостатки. Необычные формы избирательных округов иногда бывают неизбежными из-за таких особенностей местной географии, как реки, озера, леса и очертания побережий. Более того, избирательный округ может быть аккуратным и компактным и при этом очевидно организованным с целью манипуляций. Так, карта избирательных округов на выборах 2011 года в законодательное собрание штата Пенсильвания выглядела очень причудливо и неестественно, и в 2018 году республиканцы подготовили предложения по ее изменению. Предложенные округа полностью соответствовали пяти параметрам, определенным Верховным судом штата, но математический анализ распределения голосов в округах показал, что границы все равно не были объективными и заметно влияли на результаты голосования.

Даже масштаб карты может вызвать проблемы. Основная из них – фрактальность геометрии. Фрактал – это геометрическая фигура с детальной структурой во всех масштабах. Многие природные формы больше похожи на фракталы, чем на евклидовы треугольники и окружности. Береговые линии и облака можно очень эффективно моделировать в виде фракталов, что позволяет отразить их замысловатую форму. Термин «фрактал» пустил в обращение в 1975 году Бенуа Мандельброт, разработавший и активно продвигавший новую область – фрактальную геометрию. Береговые линии и реки представляют собой чрезвычайно извилистые фрактальные кривые, и их длина при измерении сильно зависит от того, насколько мелкий масштаб при этом используется. На самом деле длина фрактальной кривой теоретически бесконечна, что в переводе на язык повседневной реальности звучит так: «Измеренная длина возрастает безгранично по мере того, как вы рассматриваете объект все в больших подробностях». Так что юристы могут спорить до бесконечности об измерении периметра, не говоря уже о том, был ли данный избирательный округ изменен с целью манипуляции.

* * *

Поскольку странность формы такой неточный параметр, имеет смысл попробовать что-нибудь более определенное. Соответствуют ли результаты голосования статистическим избирательным паттернам электората?

Если на выборах идет борьба за 10 мест, а симпатии избирателей распределяются 60:40, то можно ожидать, что шесть мест получит одна партия, а четыре – другая. Если же одна партия получит все 10 мест, то можно заподозрить подтасовку. Однако на самом деле все не так просто. Результат такого рода обычен в мажоритарных системах голосования. Так, во время всеобщих выборов 2019 года в Великобритании Консервативная партия получила 44 % голосов, но 365 из 650 мест, что составляет 56 % всех мест. Лейбористы получили 32 % голосов и 31 % мест. Шотландские националисты с 4 % голосов получили 7 % мест (хотя это особый случай, поскольку их избирательная база целиком находится в Шотландии). Либеральные демократы получили 12 % голосов и 2 % мест. Большая часть несоответствий здесь была следствием региональных избирательных паттернов, а не странно проведенных границ избирательных округов. В конце концов, если результат двухпартийных выборов одного человека, скажем президента, решается простым большинством, то 50 % голосов (плюс один голос) будет достаточно для получения поста целиком.

Вот американский пример. В штате Массачусетс на федеральных и президентских выборах с 2000 года республиканцы получали в целом более трети голосов. Тем не менее в последний раз республиканцы занимали в этом штате хотя бы одно место в палате представителей аж в 1994 году. Подтасовка? Похоже, нет. Если эта треть республиканских избирателей распределена по территории штата более или менее равномерно, то, как бы вы ни проводили границы округов – исключая экстремальные варианты, при которых границы огибают дома отдельных граждан, – доля сторонников Республиканской партии в каждом округе составит приблизительно одну треть. Демократы победят везде. Именно так и происходило все эти годы.

Слева: предложение Светлых, при котором границы двух округов оставлены на усмотрение Темных. Справа: наиболее компактный вариант, который Темные могли бы выбрать

Во время одних реальных выборов математики показали, что такой эффект может оказаться неизбежным, как ни проводи границы, по крайней мере если не делить на части отдельные городки. В 2006 году, когда Кеннет Чейз боролся против Эдварда Кеннеди на выборах в сенат США, Массачусетс был разделен на девять избирательных округов. Чейз получил 30 % голосов, но проиграл во всех девяти округах. Компьютерный анализ вариантов показал, что ни один набор городов, объединенных в округ, даже если брать города, разбросанные по территории штата произвольным образом, не принес бы Чейзу победу. Его сторонники были распределены по большинству городов довольно равномерно, и обеспечить ему победу не удалось бы, какие границы ни проведи.

Поделиться:
Популярные книги

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Бастард Императора. Том 5

Орлов Андрей Юрьевич
5. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 5

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Доктор 2

Афанасьев Семён
2. Доктор
Фантастика:
альтернативная история
5.00
рейтинг книги
Доктор 2

Warhammer 40000: Ересь Хоруса. Омнибус. Том II

Хейли Гай
Фантастика:
эпическая фантастика
5.00
рейтинг книги
Warhammer 40000: Ересь Хоруса. Омнибус. Том II

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Убивать чтобы жить 7

Бор Жорж
7. УЧЖ
Фантастика:
героическая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 7

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

В осаде

Кетлинская Вера Казимировна
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
В осаде

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан