Эволюция физики
Шрифт:
Причина этого недостатка непосредственной очевидности состоит в очень малой величине взаимообмена между веществом и энергией. Энергия по отношению к массе подобна обесцененной валюте, взятой по отношению к валюте высокой ценности. Один пример сделает это ясным. Количество теплоты, способное превратить 30 тысяч тонн воды в пар, весило бы около одного грамма. Энергия столь долго считалась невесомой просто потому, что масса, которая ей отвечает, слишком мала.
Старая энергия-субстанция есть вторая жертва теории относительности. Первой была среда, в которой распространялись световые волны.
Влияние теории относительности выходит далеко за пределы тех проблем, из которых она возникла. Она снимает
Пространственно-временной континуум
«Французская революция началась в Париже 14 июля 1789 года». В этом предложении установлены место и время события. Тому, кто слышит это утверждение впервые и кто не знает, что значит Париж, можно было бы сказать: это город на нашей Земле, расположенный на 2° восточной долготы и 49° северной широты. Два числа характеризовали бы тогда место, а 14 июля 1789 года — время, в которое произошло событие. В физике точная характеристика, когда и где произошло событие, чрезвычайно важна, гораздо важнее, чем в истории, так как эти числа образуют основу количественного описания.
Ради простоты мы рассматривали прежде только движение вдоль прямой. Нашей координатной системой был твёрдый стержень с началом, но без конца. Сохраним это ограничение. Отметим на стержне различные точки; положение каждой из них может быть охарактеризовано только одним числом — координатой точки. Говоря, что координата точки равна 7,586 м, мы подразумеваем, что её расстояние от начала стержня равно 7,586 м. Наоборот, если кто-то задаёт мне любое число и единицу измерения, я всегда могу найти точку на стержне, соответствующую этому числу. Мы видим, что каждому числу соответствует определённая точка на стержне, а каждой точке соответствует определённое число. Этот факт выражается математиками в следующем предложении:
Все точки стержня образуют одномерный континуум.
Тогда существует точка, сколь угодно близкая к данной точке стержня. Мы можем связать две отдалённые точки на стержне рядом отрезков, расположенных один за другим, каждый из которых сколь угодно мал. Таким образом, тот факт, что эти отрезки, связывающие отдалённые точки, могут быть взяты сколь угодно малыми, является характеристикой континуума.
Возьмём другой пример. Пусть мы имеем плоскость или, если вы предпочитаете что-либо более конкретное, поверхность прямоугольного стола (рис. 66). Положение точки на этом столе можно охарактеризовать двумя числами, а не одним, как раньше. Два числа суть расстояния от двух перпендикулярных краёв стола. Не одно число, а пара чисел соответствует каждой точке плоскости; каждой паре чисел соответствует определённая точка. Другими словами, плоскость есть двумерный континуум. Тогда существуют точки, сколь угодно близкие к данной точке плоскости. Две отдалённые точки могут быть связаны кривой, разделённой на отрезки, сколь угодно малые. Таким образом, произвольная малость отрезков, последовательно укладывающихся на кривой, связывающей две отдалённые точки, каждая из которых может быть определена двумя числами, снова является характеристикой двумерного континуума.
Рис. 66
Ещё один пример. Представим себе, что вы хотите в качестве системы координат рассматривать
Наше пространство есть трёхмерный континуум.
Рис. 67
Существуют точки, весьма близкие к каждой данной точке пространства. И опять произвольная малость отрезков линии, связывающей отдалённые точки, каждая из которых представлена тремя числами, есть характеристика трёхмерного континуума.
Но всё это едва ли относится к физике. Чтобы вернуться к физике, нужно рассмотреть движение материальных частиц. Чтобы исследовать и предсказывать явления в природе, необходимо рассматривать не только место, но и время физических событий. Возьмём снова простой пример.
Маленький камешек, который примем за частицу, падает с башни. Допустим, что высота башни равна 80 м. Со времён Галилея мы в состоянии предсказать координаты камня в произвольный момент времени после начала его падения. Ниже представлено «расписание», приближённо описывающее положение камня после 1, 2, 3 и 4 секунд.
Время, с | Высота над землёй, м |
---|---|
0 | 80 |
1 | 75 |
2 | 60 |
3 | 35 |
4 | 0 |
В нашем «расписании» зарегистрированы пять событий, каждое из которых представлено двумя числами — временем и пространственной координатой каждого события. Первое событие есть начало движения камня с высоты 80 м от земли в момент времени, равный нулю. Второе событие есть совпадение камня с отметкой на стержне на высоте 75 м от земли. Это будет отмечено по истечении одной секунды. Последнее событие есть удар камня о землю.
Те сведения, которые записаны в «расписании», можно было бы представить иначе. Пять пар чисел его можно было бы представить как пять точек на плоскости. Установим сначала масштаб. Например: пусть один отрезок будет изображать метр, а другой секунду (рис. 68).
Рис. 68
Затем начертим две перпендикулярные линии; одну из них, скажем горизонтальную, назовём временной осью, вертикальную же — пространственной осью. Мы сразу же видим, что наше «расписание» можно представить пятью точками в пространственно-временной плоскости (рис. 69).
Рис. 69
Расстояния точек от пространственной оси представляют собой координаты времени, указанные в первой колонке «расписания», а расстояния от временной оси — их пространственные координаты.