Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Рис. 80. Дифракция рентгеновых лучей (Фотография Ластовьевского и Грегора)

Волны материи

Как истолковать тот факт, что в спектрах элементов оказываются лишь определённые характерные длины волн?

В физике часто случалось, что существенный успех был достигнут проведением последовательной аналогии между не связанными по виду явлениями. В этой книге мы часто видели, как идеи, созданные и развитые в одной ветви науки, были впоследствии успешно

применены в другой.

Развитие механистических взглядов и теории поля даёт много примеров этого рода. Сравнение разрешённых проблем с проблемами неразрешёнными может подсказать новые идеи и пролить новый свет на наши трудности. Легко найти поверхностную аналогию, которая в действительности ничего не выражает. Но вскрыть некоторые общие существенные черты, скрытые под поверхностью внешних различий, создать на этой базе новую удачную теорию — это важная созидательная работа. Развитие так называемой волновой механики, которое началось с работ де Бройля и Шрёдингера около 15 лет тому назад, является типичным примером достижений успешной теории, полученной путём глубоких и удачных аналогий.

Наш исходный пункт — это классический пример, ничего общего не имеющий с современной физикой. Возьмём в руки конец очень длинной гибкой резиновой трубки или пружины и будем двигать его ритмично вверх и вниз так, чтобы конец колебался. Тогда, как мы видели из многих других примеров, колебанием создаётся волна, распространяющаяся по трубке с определённой скоростью (рис. 81). Если мы представим себе бесконечно длинную трубку, то группы волн, однажды отправленные, будут следовать в своём бесконечном путешествии без интерференции.

Рис. 81

Возьмём теперь другой пример. Оба конца той же самой трубки закреплены. Если угодно, можно использовать скрипичную струну. Что происходит теперь, когда на одном конце резиновой трубки или струны создаётся волна? Волна, как и в предыдущем случае, начнёт своё путешествие, но она скоро отразится от другого конца трубки. Теперь мы имеем две волны: одну, созданную колебанием, и другую, созданную отражением; они движутся в противоположных направлениях и интерферируют друг с другом. Нетрудно было бы проследить интерференцию обеих волн и определить характер волны, образующейся из их сложения; она называется стоячей волной. Эти два слова — «стоячая» и «волна» — кажутся противоречащими друг другу, тем не менее их комбинация оправдывается результатом наложения обеих волн.

Простейшим примером стоячей волны является движение струны с двумя закреплёнными концами вверх и вниз, как показано на рис. 82. Это движение есть результат того, что одна волна накладывается на другую, когда обе они проходят в различных направлениях. Характерная черта этого движения состоит в том, что в покое остаются только две конечные точки. Они называются узлами. Волна, так сказать, устанавливается между двумя узлами, все точки струны одновременно достигают максимума и минимума своих отклонений.

Рис. 82

Но это только простейший вид стоячих волн. Существуют и другие. Например, стоячая волна может иметь и три узла — по одному на каждом конце и один в середине. В этом случае в покое всегда остаются три точки. Из рис. 83 видно, что здесь длина волны вдвое меньше длины волны

в примере с двумя узлами. Аналогично стоячие волны могут иметь четыре (рис. 84), пять узлов и более. В каждом случае длина волны будет зависеть от числа узлов.

Рис. 83

Рис. 84

Это число может быть только целым и может изменяться только скачками. Предложение типа «Число узлов в стоячей волне равно 3,576» есть чистая бессмыслица. Таким образом, длина волны может изменяться только прерывно (дискретно). Здесь, в этой классической проблеме, мы узнаём знакомые черты квантовой теории. Стоячая волна, созданная скрипачом, фактически ещё более сложна, будучи смесью очень многих волн с двумя, тремя, четырьмя, пятью узлами и более, а стало быть, смесью различных длин волн.

Физика может разложить такую смесь на простые стоячие волны, из которых она составлена. Или, употребляя нашу прежнюю терминологию, мы можем сказать, что колеблющаяся струна имеет свой спектр, так же как и элемент, испускающий излучение. И, так же как и в случае спектра элемента, здесь разрешены лишь известные длины волн, все же другие запрещены.

Таким образом, мы открыли некоторое подобие между колебанием струны и атомом, испускающим излучение. Странно, как может существовать эта аналогия, но мы всё же сделаем из неё дальнейшее заключение и попробуем продолжить сравнение, раз уж мы начали его.

Атом каждого элемента состоит из элементарных частиц: из тяжёлых, составляющих ядро, и из лёгких — электронов. Такая система частиц ведёт себя подобно маленькому акустическому инструменту, в котором создаются стоячие волны.

Однако стоячая волна является результатом интерференции двух или более движущихся волн. Если в нашей аналогии есть некоторая доля правды, то распространяющейся волне должна соответствовать ещё более простая структура, чем структура атома. Что же имеет наиболее простую структуру? В нашем материальном мире ничто не может быть более простым, чем электрон, элементарная частица, на которую не действуют никакие силы, т. е. электрон, покоящийся или находящийся в прямолинейном и равномерном движении. Мы могли бы прибавить новое звено в цепи нашей аналогии: движущийся прямолинейно и равномерно электрон <-> волна определённой длины. Это была новая и смелая идея де Бройля.

Раньше было показано, что имеются как явления, в которых свет обнаруживает свой волновой характер, так и явления, в которых свет обнаруживает свой корпускулярный характер. Уже привыкнув к мысли, что свет есть волна, мы, к своему удивлению, обнаружили, что в некоторых случаях, например в фотоэлектрическом эффекте, свет ведёт себя как поток фотонов. Для электронов мы имеем теперь как раз обратное положение. Мы приучили себя к мысли, что электроны — это частицы, элементарные кванты электричества и вещества. Были найдены их заряд и масса. Но если в идее де Бройля есть какая-либо правда, то должны быть такие явления, в которых вещество обнаруживает свой волновой характер. Этот вывод, полученный благодаря тому, что мы следовали акустической аналогии, кажется вначале странным и непонятным. Как может движущаяся корпускула иметь что-то общее с волной? Но такого рода трудности мы встречали в физике не раз. Те же проблемы мы встречали и в области световых явлений.

Поделиться:
Популярные книги

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Барон Дубов 3

Карелин Сергей Витальевич
3. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 3

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Новый Рал 7

Северный Лис
7. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 7

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя