Эволюция физики
Шрифт:
3. Наш мир неевклидов. Геометрическая природа его обусловлена массами и их скоростями. Гравитационные уравнения общей теории относительности стремятся раскрыть геометрические свойства нашего мира.
Предположим на минуту, что нам удалось последовательно выполнить программу общей теории относительности. Но не грозит ли нам опасность увлечься рассуждениями, слишком далёкими от реальности? Мы знаем, как хорошо старая теория объясняет астрономические наблюдения. Можно ли построить мост между новой теорией и наблюдением? Каждое рассуждение должно проверяться экспериментом, и любые выводы, как бы привлекательны они ни были, должны отбрасываться, если не соответствуют фактам. Как выдержала новая теория тяготения экспериментальную проверку? Ответ на этот вопрос можно дать в следующем предложении: старая теория есть особый, предельный случай новой. Если силы тяготения сравнительно слабы, прежний, Ньютонов закон оказывается хорошим приближением к новым законам тяготения. Таким образом,
Даже если бы нельзя было указать дополнительных наблюдений в пользу новой теории, если бы её объяснения были лишь столь же хороши, как и объяснения старой теории, предоставляя тем самым свободный выбор между обеими теориями, мы должны были бы отдать предпочтение новой. Уравнения новой теории с формальной точки зрения сложнее, но их предпосылки с точки зрения основных принципов гораздо проще. Исчезли два страшных призрака — абсолютное время и инерциальная система. Чрезвычайно важная идея эквивалентности тяжёлой и инертной масс не осталась без внимания. Не требуется допущений, касающихся сил тяготения и их зависимости от расстояния. Уравнения тяготения имеют форму структурных законов, форму, которая требуется от всех физических законов со времени великих достижений теории поля.
Из новых гравитационных законов могут быть сделаны и новые выводы, не содержащиеся в законах тяготения Ньютона. Один вывод, а именно отклонение светового луча в поле тяготения, уже указывался. Приведём ещё два других следствия.
Если старые законы вытекают из новых, когда силы тяготения слабы, то отклонения от Ньютонова закона тяготения можно ожидать только для сравнительно больших сил тяготения. Возьмём нашу Солнечную систему. Планеты, и среди них наша Земля, движутся по эллиптическим орбитам вокруг Солнца. Меркурий — планета, наиболее близкая к Солнцу. Притяжение между Солнцем и Меркурием сильнее, чем между Солнцем и любой другой планетой, так как расстояние его от Солнца меньше. Если имеется какая-либо надежда найти отклонение от закона Ньютона, то наибольший шанс — движение Меркурия. Из классической теории следует, что путь, описываемый Меркурием, того же вида, как и путь любой другой планеты, и отличается лишь тем, что он ближе к Солнцу. Согласно общей теории относительности, движение должно немного отличаться. Не только Меркурий должен обращаться вокруг Солнца, но и эллипс, который он описывает, должен очень медленно обращаться относительно системы координат, связанной с Солнцем (рис. 76). Это обращение эллипса выражает новый эффект общей теории относительности. Новая теория предсказывает величину этого эффекта. Эллипс Меркурия осуществлял бы полный оборот в три миллиона лет! Мы видим, как незначителен этот эффект и как безнадёжно было бы искать его в отношении планет, обращающихся на более далёком расстоянии от Солнца.
Рис. 76
Отклонение орбиты планеты Меркурий от эллиптической было известно прежде, чем была сформулирована общая теория относительности, но никакого объяснения этому нельзя было найти. С другой стороны, общая теория относительности развивалась независимо от этой специальной проблемы. Заключение об обращении эллипса при движении планеты вокруг Солнца было сделано позднее из новых гравитационных уравнений. Теория успешно объяснила отклонение действительно происходящего движения Меркурия от движения, предписываемого законом Ньютона.
Но существует ещё одно заключение, которое было сделано из общей теории относительности и сравнено с опытом. Мы уже видели, что ритм часов, помещённых на большой окружности вращающегося диска, отличен от ритма часов, помещённых на меньшем круге. Аналогично из теории относительности следует, что ритм часов, помещённых на Солнце, отличался бы от ритма часов, помещённых на Земле, так как влияние поля тяготения гораздо сильнее на Солнце, чем на Земле.
Мы заметили выше, что натрий, когда он раскалён, испускает однородный жёлтый свет определённой длины волны. В этом излучении один из ритмов атома; атом представляет собой, так сказать, часы, а излучённая длина волны — один из его ритмов. Согласно общей теории относительности, длина волны света, излучённого атомом натрия, скажем помещённого на Солнце, должна быть несколько больше, чем длина волны света, излучённого атомом натрия на нашей Земле.
Проблема проверки следствий общей теории относительности путём наблюдений сложна и точно никоим образом не решена. Поскольку мы интересуемся принципиальными идеями, мы не хотим входить в этот предмет глубже, а только устанавливаем, что пока приговор эксперимента, по-видимому, подтверждает выводы, сделанные из общей теории относительности.
Поле и вещество
Мы видели, как и почему механистическая точка зрения потерпела крах. Невозможно было объяснить все явления, предполагая, что между
Мы имеем две реальности — вещество и поле. Несомненно, что в настоящее время мы не можем представить себе всю физику построенной на понятии вещества, как это делали физики в начале XIX столетия. В настоящее время мы принимаем оба понятия. Можем ли мы считать вещество и поле двумя различными, несходными реальностями? Пусть дана маленькая частица вещества; мы могли бы наивно представить себе, что имеется определённая поверхность частицы, за пределами которой её уже нет, а появляется её поле тяготения. В нашей картине область, в которой справедливы законы поля, резко отделена от области, в которой находится вещество. Но что является физическим критерием, различающим вещество и поле? Раньше, когда мы не знали теории относительности, мы пытались бы ответить на этот вопрос следующим образом: вещество имеет массу, в то время как поле её не имеет. Поле представляет энергию, вещество представляет массу. Но мы уже знаем, что такой ответ в свете новых знаний недостаточен. Из теории относительности мы знаем, что вещество представляет собой огромные запасы энергии и что энергия представляет вещество. Мы не можем таким путём провести качественное различие между веществом и полем, так как различие между массой и энергией не качественное. Гораздо большая часть энергии сосредоточена в веществе, но поле, окружающее частицу, также представляет собой энергию, хотя и в несравненно меньшем количестве. Поэтому мы могли бы сказать: вещество там, где концентрация энергии велика, поле там, где концентрация энергии мала. Но если это так, то различие между веществом и полем скорее количественное, чем качественное. Нет смысла рассматривать вещество и поле как два качества, совершенно отличные друг от друга. Мы не можем представить себе резкую границу, разделяющую поле и вещество.
Те же трудности вырастают для заряда и его поля. Кажется невозможным дать ясный качественный критерий, позволяющий провести различие между веществом и полем или зарядом и полем.
Структурные законы, т. е. законы Максвелла и гравитационные законы, нарушаются для очень большой концентрации энергии или, как мы можем сказать, они нарушаются там, где присутствуют источники поля, т. е. электрические заряды или вещество. Но не можем ли мы слегка модифицировать наши уравнения так, чтобы они были справедливы всюду, даже в областях, где энергия колоссально сконцентрирована?
Мы не можем построить физику на основе только одного понятия — вещества. Но деление на вещество и поле после признания эквивалентности массы и энергии есть нечто искусственное и неясно определённое. Не можем ли мы отказаться от понятия вещества и построить чистую физику поля? То, что действует на наши чувства в виде вещества, есть на деле огромная концентрация энергии в сравнительно малом пространстве. Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путём можно было бы прийти к новым представлениям о природе. Их конечная цель состояла бы в объяснении всех событий в природе структурными законами, справедливыми всегда и всюду. С этой точки зрения брошенный камень есть изменяющееся поле, в котором состояния наибольшей интенсивности поля перемещаются в пространстве со скоростью камня. В нашей новой физике не было бы места и для поля, и для вещества, поскольку единственной реальностью было бы поле. Этот новый взгляд внушён огромными достижениями физики поля, успехом в выражении законов электричества, магнетизма, тяготения в форме структурных законов и, наконец, эквивалентностью массы и энергии. Нашей основной задачей было бы модифицировать законы поля таким образом, чтобы они не нарушались для областей, в которых энергия имеет колоссальную концентрацию.
Но до сих пор мы не имели успеха в последовательном и убедительном выполнении этой программы. Заключение о том, возможно ли её выполнить, принадлежит будущему. В настоящее время во всех наших теоретических построениях мы всё ещё должны допускать две реальности — поле и вещество.
Фундаментальные проблемы ещё стоят перед нами. Мы знаем, что всё вещество состоит лишь из частиц немногих видов. Как различные формы вещества построены из этих элементарных частиц? Как эти элементарные частицы взаимодействуют с полем? Поиски ответа на эти вопросы привели к новым идеям в физике, идеям квантовой теории.