Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Шрифт:

Теперь начинается самое главное: взглянем на это столкно­вение с позиций наблюдателя, движущегося на автомашине со скоростью, совпадающей с горизонтальной компонентой ско­рости одной из частиц. Как оно будет выглядеть? Наблюдателю покажется, что частица 1 поднимается прямо вверх (горизон­тальная компонента у нее пропала), а после столкновения падает прямо вниз по той же причине (фиг. 16.3, а).

Фиг. 16.3. Еще две картины того же столкновения (видимые из дви­жущихся автомашин).

Зато частица 2 движется совсем иначе, она проносится мимо с колоссальной скоростью и под малым углом (но этот угол и до и после столк­новения одинаков). Обозначим горизонтальную компоненту скорости частицы 2 через и, а вертикальную скорость части­цы 1 — через w.

Чему же равна вертикальная скорость utga частицы 2? Зная это, можно получить правильное выражение для импульса, пользуясь сохранением импульса в вертикальном направлении. (Сохранение горизонтальной компоненты импульса и так обеспечено: у обеих частиц до и после столкновения эта ком­понента одинакова, а у частицы 1 она вообще равна нулю. Так что следует требовать

только сохранения вертикальной скорости utga.) Но вертикальную скорость можно получить, просто взглянув на это столкновение с другой точки зрения! Посмотрите на столкновение, изображенное на фиг. 16.3, а из автомашины, которая движется теперь налево со скоростью и. Вы увидите то же столкновение, но перевернутое «вверх ногами» (фиг. 16.3, б). Теперь уже частица 2 упадет и подскочит со скоростью w, а горизонтальную скорость и приобретет частица 1. Вы уже, конечно, догадываетесь, чему равна горизонтальная скорость utga; она равна wЦ(1-u2/c2) [см. уравнение (16.7)]. Кроме того, нам известно, что изменение вертикального им­пульса вертикально движущейся частицы равно

Dp=2mww

(двойка здесь потому, что движение вверх перешло в движение вниз). У частицы, движущейся косо, скорость равна v, ее компоненты равны uи wЦ(1-u2/c2), а масса ее mv. Изменение вертикального импульса этой частицы Dр'=2тvwЦ(1—u22), так как в соответствии с нашим предположением (16.8) любая компонента импульса равна произведению одноименной ком­поненты скорости на массу, отвечающую этой скорости. Но суммарный импульс равен нулю. Значит, и вертикальные импульсы должны взаимно сократиться, отношение же массы, движущейся со скоростью w, к массе, движущейся со скоростью v, должно оказаться равным

mw/mv=Ц(1-u2/c2). (16.9).

Перейдем к предельному случаю, когда w стремится к нулю. При очень малых w величины v и u практически совпадут, mw®m0, a mv®mu. Окончательный результат таков:

Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольных w, когда масса подчиняется формуле (16.10). При этом скорость v, стоящую в уравнении (16.9), можно найти из прямоугольного треугольника

Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства при w—>0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение. Для простоты пред­положим, что из двух одинаковых тел, сталкивающихся с равными скоростями w, образуется новое тело, которое больше не распадается (фиг. 16.4,а).

Фиг. 16.4. Две картины неупругого соударения тел равной массы.

Массы тел до столкновения равны, как мы знаем, m0/Ц(1- w2/c2). Предположив сохраня­емость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образо­ванного тела. Представим себе бесконечно малую скорость и, поперечную к скоростям w (можно было бы работать и с ко­нечной скоростью и, но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, дви­гаясь в лифте со скоростью -u. Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неиз­вестной массой М. У тела 1, как и у тела 2, есть компонента скорости и, направленная вверх, и горизонтальная компонента, практически равная w. После столкновения остается масса М, движущаяся вверх со скоростью u, много меньшей и скорости света и скорости w. Импульс должен остаться прежним; по­смотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p~=2mwu, а потом стал р'=Muu. Но Muиз-за малости u, по существу, совпадает с М0. Благодаря сохранению импульса

М0=2mw. (16.11)

Итак, масса тела, образуемого при столкновении двух одина­ковых тел, равна их удвоенной массе. Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами-то массы тел были больше, чем когда тела неподвижны. Они вносят в суммарную массу М не массу покоя, а больше. Не

правда ли, поразительно! Оказывается, сохранение импульса в столк­новении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!

§ 5. Релятивистская энергия

Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными

Потом мы продвинулись дальше и обнаружили, что полная энергия тела равна полной его массе, умноженной на с2. Про­должим эти рассуждения.

Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела М. Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри М. Масса тела М, как мы обнаружили, равна не 2m0, a 2mw. Этой массой 2mwснабдили тело его составные части, чья масса покоя была 2m0; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является кинетической энергией. Иными словами, если две частицы сближаются и при этом образуется потенциальная или другая форма энергии, если части состав­ного тела замедляются потенциальным барьером, производя работу против внутренних сил, и т. д.,— во всех этих случаях масса тела по-прежнему равна полной привнесенной энергии. Итак, вы видите, что выведенное выше сохранение массы рав­нозначно сохранению энергии, поэтому в теории относитель­ности нельзя говорить о неупругих соударениях, как это было в механике Ньютона. Согласно механике Ньютона, ничего страшного не произошло бы, если бы два тела, столкнувшись, образовали тело с массой 2m0, не отличающееся от того, какое получилось бы, если их медленно приложить друг к другу. Конечно, из закона сохранения энергии мы знаем, что внутри тела имеется добавочная кинетическая энергия, но по закону Ньютона на массу это никак не влияет. А теперь выясняется, что это невозможно: поскольку до столкновения у тел была кинетическая энергия, то составное тело окажется тяжелее; значит, это будет уже другое тело. Если осторожно приложить два тела друг к другу, то возникает тело с массой 0; когда же вы их с силой столкнете, то появится тело с большей массой. А если масса отличается, то мы можем это заметить. Итак, сохранение импульса в теории относительности с необходи­мостью сопровождается сохранением энергии.

Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой М, и предположим, что что-то стряс­лось и оно распалось на две равные части, имеющие скорости w и массы mw. Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса m0. Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию (mw– m02. Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как 2mw=M, то высво­бодившаяся энергия Е = (М-2m02. Это уравнение было ис­пользовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,— иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и М и m0были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если М распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему ука­зали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, под­считали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосред­ственно измерили (не будь формулы Эйнштейна, энергию из­мерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и по­пулярных описаний развития физики и техники. Пробле­ма, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.

Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.

Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии m0c2и говорить с этих пор, что полная энергия объекта равна mc2? Во-первых, если бы нам были видны составные части с массой покоя m0внутри объекта M, то можно было бы говорить, что часть массы M есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри M какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из 2p, потому что он распадается порой и на Зp!

Поделиться:
Популярные книги

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Придворный. Гоф-медик

Дронт Николай
1. Придворный
Фантастика:
фэнтези
6.83
рейтинг книги
Придворный. Гоф-медик

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Адептус Астартес: Омнибус. Том I

Коллектив авторов
Warhammer 40000
Фантастика:
боевая фантастика
4.50
рейтинг книги
Адептус Астартес: Омнибус. Том I

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Блуждающие огни 5

Панченко Андрей Алексеевич
5. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 5

Развод, который ты запомнишь

Рид Тала
1. Развод
Любовные романы:
остросюжетные любовные романы
короткие любовные романы
5.00
рейтинг книги
Развод, который ты запомнишь

Книга 4. Игра Кота

Прокофьев Роман Юрьевич
4. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
рпг
6.68
рейтинг книги
Книга 4. Игра Кота

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

Я сделаю это сама

Кальк Салма
1. Магический XVIII век
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Я сделаю это сама

Газлайтер. Том 19

Володин Григорий Григорьевич
19. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 19