Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 6. Электродинамика
Шрифт:

§ 2. Исключения из «правила потока»

Здесь мы приведем несколько примеров, частично известных Фарадею, которые показывают, как важно ясно понимать раз­ницу между двумя эффектами, ответственными за возникнове­ние наведенной э. д. с. Наши примеры включают те случаи, когда «правило потока» неприменимо либо потому, что вообще никаких проводов нет, либо потому, что путь, избираемый индуцированными токами, проходит внутри объема провод­ника.

Вначале сделаем важное замечание: та часть э. д. с., которая возникает за счет поля Е, не связана с существованием физиче­ской проволоки (в отличие от части vXВ). Поле Е может суще­ствовать в пустом пространстве, и контурный интеграл от

него по любой воображаемой линии в пространстве есть скорость из­менения потока В через эту линию.

Фиг. 17.2. При вращении диска слагаемое vXB порож­дает э.д.с., но поток сквозь цепь не меняется.

Фиг. 17.3. При повороте пластинок в однородном маг­нитном поле поток может сильно меняться, но э.д.с. не возникает.

(Заметьте, что это совсем непохоже на поле Е, создаваемое статическими зарядами, так как в электростатике контурный интеграл от Е по замкнутой петле всегда равен нулю.)

Теперь опишем случай, когда поток через контур не меняется, а э. д. с. тем не менее существует. На фиг. 17.2 пока­зан проводящий диск, помещенный в магнитное поле и который может вращаться на неподвижной оси. Один контакт приделан к оси, а другой трется о внешний край диска. Цепь замыкается через гальванометр. Когда диск вращается, «контур» (в смысле места в пространстве, где текут токи) всегда остается тем же самым. Но часть «контура» проходит в диске, в движущемся материале. Хотя поток по контуру постоянен, э. д. с. все же есть, в этом можно убедиться по отклонению гальванометра. Ясно, что здесь перед нами случай, когда за счет силы vXB в движущемся диске возникает э. д. с., которая не может быть равна изменению потока.

В качестве обратного примера мы сейчас рассмотрим не­сколько необычный случай, когда поток через «контур» (снова в смысле того места, где текут токи) изменяется, а э. д. с. отсутствует. Представим себе две металлические пластины со слегка изогнутыми краями (фиг. 17.3), помещенные в одно­родное магнитное поле, перпендикулярное их плоскости. Каж­дая пластина присоединена к одному из полюсов гальвано­метра, как показано на фигуре. Пластины образуют контакт в одной точке Р, так что цепь замкнута. Если теперь повернуть пластины на небольшой угол, точка контакта сдвинется в Р'.

Если мы вообразим, что «цепь» замкнута внутри пластин по пунктирной линии, то по мере поворота пластины взад и впе­ред магнитный поток через этот контур изменяется на большую величину. Но поворот может произойти от незначительного движения, тогда vXB очень мало и э. д. с. практически отсутствует. В этом случае «правило потока» бессильно. Оно спра­ведливо лишь для контуров, материал которых остается неизменным. Когда материал контура меняется, приходится обращаться снова к основным законам. Правильное физическое содержание всегда дается двумя основными законами:

§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон

Мы уже говорили, что э. д. с., созданная изменяющимся магнитным полем, может существовать даже

в отсутствие проводников; т. е. магнитная индукция возможна без проводов. Мы можем представить себе э. д. с. вдоль произвольной мате­матической кривой в пространстве. Она определяется как тангенциальная компонента Е, проинтегрированная вдоль кривой. Закон Фарадея гласит, что этот контурный интеграл равен скорости изменения магнитного потока через замкнутую кривую [соотношение (17.3)].

В качестве примера действия такого индуцированного электрического поля мы сейчас рассмотрим движение электрона в из­меняющемся магнитном поле. Представим себе магнитное поле, которое всюду на плоскости направлено по вертикали (фиг. 17.4). Магнитное поле создается электромагнитом, но детали нас здесь интересовать не будут. В нашем примере мы предположим, что магнитное поле симметрично относительно некой оси, т. е. напряженность магнитного поля зависит только от расстояния до оси.

Фиг. 17.4. Электрон ускоряется в аксиально-симметричном магнитном поле, зависящем от времени.

Магнитное поле меняется также со време­нем. Представим теперь, что электрон в этом поле движется по круговой траектории постоянного радиуса с центром на оси поля. (Позже мы увидим, как можно создать такое движение.) Меняющееся магнитное поле создает электрическое поле Е, касательное к орбите электрона, которое будет двигать его по окружности. Вследствие симметрии это электрическое поле всюду на окружности принимает одну и ту же величину. Если орбита электрона имеет радиус r, то контурный интеграл от Е по орбите равен скорости изменения магнитного потока через окружность. Контурный интеграл от Е равен просто величине Е, умноженной на длину окружности 2pr. Магнитный поток, вообще говоря, дается интегралом. Обозначим через Bср — среднее магнитное поле внутри окружности; тогда поток равен этому среднему магнитному полю, умноженному на площадь круга.

Мы получим (отвлекаясь от знака)

Поскольку мы предположили, что r—величина постоянная, то Е пропорционально производной по времени от среднего поля:

(17.4)

Электрон будет чувствовать электрическую силу qE и будет ею ускоряться. Помня, что на основании точного релятивистского уравнения движения скорость изменения импульса пропорцио­нальна силе, имеем

(17.5)

Для принятой нами круговой орбиты электрическая сила, действующая на электрон, всегда направлена по движению, поэтому полный импульс будет расти со скоростью, даваемой равенством (17.5). Комбинируя (17.5) и (17.4), можно связать скорость изменения импульса с изменением среднего магнитного поля:

(17.6)

Интегрируя по t, получаем следующее выражение для им­пульса электрона:

Поделиться:
Популярные книги

Шесть принцев для мисс Недотроги

Суббота Светлана
3. Мисс Недотрога
Фантастика:
фэнтези
7.92
рейтинг книги
Шесть принцев для мисс Недотроги

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Выстрел на Большой Морской

Свечин Николай
4. Сыщик Его Величества
Детективы:
исторические детективы
полицейские детективы
8.64
рейтинг книги
Выстрел на Большой Морской

Адаптация

Уленгов Юрий
2. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Адаптация

Новый Рал 4

Северный Лис
4. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 4

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Имперский Курьер. Том 3

Бо Вова
3. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Ротмистр Гордеев 3

Дашко Дмитрий
3. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 3

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII