Фейнмановские лекции по физике. 6. Электродинамика
Шрифт:
Сейчас мы хотим взглянуть в общем виде на поведение электрических и магнитных полей в пустом пространстве вдалеке от источников, т. е. от токов и зарядов. Очень близко от них (так близко, что источники за время запаздывания передачи не успевают сильно измениться) поля очень похожи на те, которые получились у нас в электростатике или магнитостатике. Но если перейти к таким большим расстояниям, что запаздывание станет заметным, то природа полей может радикально отличаться от тех решений, которые мы нашли. Когда поля значительно удаляются ото всех источников, они начинают в некотором смысле приобретать свой собственный характер. Так что мы вправе приступить к обсуждению поведения полей в области, где нет ни токов, ни зарядов.
Предположим, что нас
(20.4)
(20.5)
Если r и j равны нулю, то эти уравнения упрощаются:
(20.6)
(20.7)
Стало быть, в пустом пространстве и скалярный потенциал j, и каждая компонента векторного потенциала А удовлетворяют одному и тому же математическому уравнению. Пусть буквой y (пси) мы обозначили любую из четырех величин j, Ах, Ау, Аг; тогда нам нужно изучить общие решения уравнения
(20.8)
Его называют трехмерным волновым уравнением — трехмерным потому, что функция y может в общем случае зависеть от х, у и z и следует учитывать изменения по каждой из этих координат. Это становится ясным, если мы выпишем явно три члена оператора Лапласа:
(20.9)
В пустом пространстве электрические и магнитные поля Е и В тоже удовлетворяют волновому уравнению. Так, поскольку B=СXА, дифференциальное уравнение для В можно получить, взяв ротор от уравнения (20.7). Раз лапласиан — это скалярный оператор, то порядок операций вычисления лапласиана и ротора можно переставлять:
Точно так же можно переставлять и вычисление rot и d/dt:
Из этого мы получаем следующее дифференциальное уравнение
для В:
(20.10)
Тем самым выясняется, что компонента магнитного поля В удовлетворяет трехмерному волновому уравнению. Подобно этому, из того факта, что Е=-Сj-dAJdt, следует, что электрическое поле Е в пустом пространстве удовлетворяет трехмерному волновому уравнению
(20.11)
Все наши электромагнитные поля подчиняются одному и тому же уравнению (20.8). Можно еще спросить: каково самое общее решение этого уравнения? Однако прежде, чем решать этот трудный вопрос, сначала посмотрим, что можно сказать в общем случае о тех решениях, в которых по у и по z ничего не меняется. (Всегда сначала беритесь за простые случаи, чтобы было видно, чего следует ожидать, а уж потом можете переходить к случаям посложней.) Предположим, что величина полей зависит только от х, так
Можно было бы прямо рассмотреть решение волнового уравнения для какой-нибудь из электромагнитных величин. Вместо этого мы начнем прямо с начала, с уравнений Максвелла для пустого пространства, и вы убедитесь в их тесной связи с электромагнитными волнами. Так что мы отправляемся от уравнений (20.1), полагая, что в них токи и заряды равны нулю. Они обращаются в
(20.12)
Распишем первое уравнение покомпонентно:
(20.13)
Мы предположили, что по у и z поле не меняется, так что два последних члена равны нулю. Тогда, согласно (20.13),
(20.14)
Решением его является постоянное в пространстве Ех(компонента электрического поля в направлении х). Взглянув на уравнение IV в (20.12) и полагая, что В тоже не изменяется вдоль y и z, вы убедитесь, что Ехпостоянно и во времени. Таким полем может оказаться постоянное поле от какого-то заряженного конденсатора вдали от этого конденсатора. Нас сейчас не занимают такие неинтересные статические поля; мы интересуемся лишь динамически изменчивыми полями. А для динамических полей Ех=0.
Итак, мы пришли к важному результату о том, что при распространении плоских волн в произвольном направлении электрическое поле должно располагаться поперек направления своего распространения. Конечно, у него еще остается возможность каким-то сложным образом изменяться по координате х.
Поперечное поле Е можно всегда разбить на две компоненты, скажем на у и z. Так что сначала разберем случай наличия у электрического ноля только одной поперечной компоненты. Для начала возьмем электрическое поле, направленное по у, т. е. с нулевой z-компонентой. Ясно, что, решив эту задачу, мы всегда сможем разобрать и тот случай, когда электрическое поле всюду направлено по z. Общее решение можно всегда представить в виде суперпозиции двух таких полей.
Какими простыми стали теперь наши уравнения! Теперь единственная ненулевая компонента электрического поля — это Еу, и все производные (кроме производных по х) тоже равны нулю. Остатки уравнений Максвелла выглядят чрезвычайно просто.
Рассмотрим теперь второе из уравнений Максвелла [т. е. II из (20.12)]. Расписав компоненты rot E, получаем