Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Фиг. 37.4. Образование доме­нов в монокристалле железа.

При этом создалось бы зна­чительное внешнее магнитное поле, содержащее в себе огромную энергию. Мы можем уменьшить эту энергию поля, если распо­ложим атомы так, чтобы одна часть кубика была намагничена вверх, а другая — вниз, как показано на фиг. 37.4, б. При этом, разумеется, поле вне железа будет занимать меньший объем и будет нести в себе меньше энергии.

Постойте, постойте! В слое между двумя областями рядом с электронами со спином, направленным вверх, сидят электро­ны со спином, направленным вниз. Но ферромагнетизм появ­ляется только в тех материалах, для которых энергия умень­шается, когда спины параллельны, а не противоположны. Так что вдоль пунктирной линии на фиг. 37.4, б возникает некоторая добавочная энергия.

Эта энергия иногда называется энергией стенки. Область, имеющая только одно направление намагниченности, называется доменом. На каждой единице площади разделяющей по­верхности между двумя доменами у стенки доме­на, с противоположных сторон которой у нас расположены атомы, чьи магнитные моменты направлены противоположно, сосредоточена энергия. Конечно, нельзя говорить строго, что на границе моменты двух сосед­них атомов в точности противоположны, природа-то сделала этот переход более постепенным. Но сейчас нам не стоит ин­тересоваться такими тонкими деталями.

Главный же вопрос теперь заключается вот в чем: выгодны такие стенки или нет? Ответ на него зависит от размеров доме­нов. Предположим, что мы увеличили размеры так, что все стало вдвое больше. При этом объем внешнего пространства, заполненного магнитным полем данной силы, станет в восемь раз больше, а энергия магнитного поля, которая пропорцио­нальна объему, тоже возрастет в восемь раз. Но площадь границы между двумя доменами, на которой сосредоточена энергия стенки, возрастет только в четыре раза. Следователь­но, если кусок железа достаточно велик, ему выгодно расще­питься на некое число доменов. Вот почему лишь очень малень­кие кристаллы могут состоять только из одного домена. Любой большой объект, размер которого больше приблизительно од­ной тысячной миллиметра, будет иметь по крайней мере одну междоменную стенку, а обычный «сантиметровый» объект расщепляется, как это показано на рисунке, на множество до­менов. Расщепление на домены будет происходить до тех пор, пока энергия, необходимая на установление еще одной допол­нительной стенки, не сравняется с уменьшением энергии маг­нитного поля вне кристалла.

Природа же нашла еще один способ понижения энергии. Полю нет никакой необходимости выходить наружу, если, как это показано на фиг. 37.4, г, взять маленькие треугольные области с направленной в сторону намагниченностью. При та­ком расположении, как на фиг. 37.4, г, внешнее поле полностью отсутствует, а площадь доменных стенок лишь незначительно больше.

Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным ку­бом. Его «вертикальный» размер будет отличаться от «горизон­тального».Этот эффект называется магнитострикцией. В ре­зультате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г, не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске нена­магниченного железа.

А что получится, если мы приложим внешнее магнитное по­ле? В качестве простого примера рассмотрим кристалл, домены которого показаны на фиг. 37.4, д. Если мы приложим магнит­ное поле, направленное вверх, то как будет происходить намагничивание кристалла? Прежде всего средняя доменная стен­ка может передвинуться в сторону (направо) и уменьшить энер­гию. Она перемещается таким образом, чтобы область направления «вверх» стала больше области направления «вниз», Элементарных магнитиков, направленных по полю, становится больше, а это приводит к понижению энергии. Таким образом, в куске железа в слабых магнитных полях с самого начала на­магничивания доменная стенка начнет двигаться и «съедать» области, намагниченные противоположно полю. По мере того как поле продолжает увеличиваться, весь кристалл постепенно превращается в один большой домен, в котором внешнее поле помогает сохранять направление «вверх». В сильном магнит­ном поле кристаллы намагничиваются в одну сторону как раз потому, что их энергия в приложенном поле уменьшается. Внешнее магнитное поле кристаллов теперь уже не так сущест­венно.

А что если геометрия кристалла не так проста? Что если какая-то ось кристалла и его спонтанная намагниченность нап­равлены в одну сторону, а мы прилагаем поле, направленное в другую, скажем под углом 45°? Можно думать, что домены по­вернутся так, чтобы их намагниченность стала параллельной полю, а затем они, как и прежде, смогут слиться в один домен. Но сделать это для железа нелегко, ибо энергия, необходимая для намагничивания кристалла, зависит от направления намаг­ничивающего поля относительно кристаллической оси. Намаг­нитить железо в направлении, параллельном кристаллической оси, относительно легко, но для того чтобы намагнитить его в каком-то другом направлении, скажем под углом 45° к на­правлению оси, энергии требуется больше. Следовательно,

если в таком направлении приложить магнитное поле, то сначала происходит рост доменов, намагниченных в одном из избран­ных направлений, близких к направлению приложенного поля, пока в эту сторону не будет направлена намагниченность всех областей. Затем при гораздо больших полях общая намагниченность постепенно поворачивается к направ­лению поля, как это показано на фиг. 37.5.

Фиг. 37.5. Намагничивающее поле Н, направленное под некоторым углом к кристаллической оси, посте­пенно изменяет направление намагниченности М, не изменяя ее величины.

На фиг. 37.6 показаны полученные из опыта кривые намагничивания монокристал­лов железа.

Фиг. 37.6. График компоненты М, параллельной полю Н, при раз­личных направлениях Н(по отношению к осям кристалла).

Чтобы вы поняли их, я пред­варительно должен объяснить кое-какие обозначения, используемые для описания направлений в кристалле. Существует мно­го способов расслоения кристалла на плос­кости, в которых расположены атомы.

Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую,— вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz. Она называется плос­костью (100), так как обратные величины отрезков, отсекае­мых этой плоскостью по осям у и z, равны нулю.

Фиг. 37.7. Способы обозначения кристаллических плоскостей.

Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квад­ратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и. z. Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).

Вернемся теперь к фиг. 37.6. На ней мы видим кривые на­магничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь сла­бых, что в нашем масштабе их трудно изобразить, намагничен­ность чрезвычайно быстро возрастает до весьма больших зна­чений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы пе­редвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совер­шенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до на­сыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при боль­ших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать боль­шей намагниченности, она уже равна Mнас— значит, спины всех электронов направлены вверх.

Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под уг­лом 45° к оси х? Мы включаем небольшое поле, и намагничен­ность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достиже­ния насыщения поле должно быть довольно большим, ибо век­тор намагниченности нужно повернуть в сторону от направле­ния легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с верти­кальной осью должна будет давать значение намагниченно­сти, составляющее 1/Ц2от намагниченности насыщения. Ока­зывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/Ц2. Аналогично для направ­ления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вер­тикальную ось на расстоянии, составляющем 1/Ц2 от значе­ния, соответствующего насыщению.

Поделиться:
Популярные книги

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Лучше подавать холодным

Аберкромби Джо
4. Земной круг. Первый Закон
Фантастика:
фэнтези
8.45
рейтинг книги
Лучше подавать холодным

Имперец. Земли Итреи

Игнатов Михаил Павлович
11. Путь
Фантастика:
героическая фантастика
боевая фантастика
5.25
рейтинг книги
Имперец. Земли Итреи

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Отмороженный 7.0

Гарцевич Евгений Александрович
7. Отмороженный
Фантастика:
рпг
аниме
5.00
рейтинг книги
Отмороженный 7.0

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Энфис 5

Кронос Александр
5. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 5

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан