Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

F=YA(Dl/l) (38.3)

Постоянная Y определяется только свойствами природы ма­териала; ее называют модулем Юнга. (Обычно модуль Юнга обозначается буквой Е, но эту букву мы уже использовали для электрического поля, для энергии и для э. д. с., так что теперь лучше взять другую.)

Силу, действующую на единичной площади, называют на­пряжением, а удлинение участка, отнесенное к его длине, т. е. относительное удлинение называют деформацией. Уравне­ние (38.3) можно переписать следующим образом;

F/A =YXDl/l. (38.4)

Напряжение=(Модуль

Юнга)X(Деформация).

При растяжении, подчиняющемуся закону Гука, возникает еще одно осложнение: если брусок материала растягивается в одном направлении, то под прямым углом к растяжению он сжимается. Уменьшение толщины пропорционально самой толщине w и еще отношению Dl/l. Относительное боковое сжатие одинаково как для ширины, так и для его высоты и обычно за­писывается в виде

где постоянная s характеризует новое свойство материала и называется отношением Пуассона. Это число положительное до знаку, по величине меньше 1/2. (То, что постоянная о в об­щем случае должна быть положительной, «разумно», но ниотку­да не следует, что она должна быть такой.)

Две константы Y и s полностью определяют упругие свой­ства однородного изотропного (т. е. некристаллического) мате­риала. В кристаллическом материале растяжение и сокращение в разных направлениях может быть различным, поэтому и упру­гих постоянных может быть гораздо больше. Временно мы ог­раничим наши обсуждения однородными изотропными материа­лами, свойства которых могут быть описаны постоянными s и Y. Как обычно, существует множество способов описания свойств.

Некоторым, например, нравится описывать упругие свойст­ва материалов другими постоянными. Но таких постоянных всегда берется две, и они могут быть связаны с нашими s и Y.

Последний общий закон, который нам нужен,— это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиция будет работать. Если при одном наборе сил вы получаете неко­торое дополнительное перемещение, то результирующее пере­мещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил.

Теперь мы имеем все необходимые общие принципы: прин­цип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нуж­но для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, ко­нечно, так; из этих принципов вы действительно можете полу­чить почти все, ибо ваши теперешние математические возмож­ности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.

§ 2. Однородная деформация

В качестве первого примера посмотрим, что происходит с пря­моугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом воз­никнет сила, действующая на каждую грань бруска и пропор­циональная его площади (фиг. 38.2).

Фиг. 38.2. Брусок под действием равномерного гидростатического давления.

Поскольку гидростатиче­ское давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматри­вать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.

Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.

Задача 1. Если

мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:

Задача 2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна -p/Y, а соответствующая деформация в бо­ковом направлении будет +sp/Y. Мы получаем

Задача 3. Если мы прило­жим к сторонам бруска дав­ление р, то деформация дав­ления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформа­цию нужно умножить на -s. Боковая деформация равна

так что

Комбинируя результаты этих трех задач, т. е. записывая Dl как dl1+Dl2+Dl3, получаем

Задача, разумеется, симметрична во всех трех направлениях, поэтому

Интересно также найти изменение объема при гидроста­тическом давлении. Поскольку V=lwh, то для малых пере­мещений можно записать

Воспользовавшись (38.6) и (38.7), мы имеем

Имеются любители назы­вать DV/V объемной де­формацией и писать

Объемное напряжение р (гидростатическое давление) пропор­ционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением

Поскольку коэффициент К представляет некоторый практиче­ский интерес, то во многих справочниках вместо Y и s приво­дятся У и К. Но если вам нужно знать а, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона s должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы от­рицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из лю­бого кубика, т. е. это означало бы, что кубик находится в неу­стойчивом равновесии. Если бы он начал расширяться, то рас­ширение продолжалось бы само по себе с высвобождением энергии.

Поделиться:
Популярные книги

Долгий путь домой

Русич Антон
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
6.20
рейтинг книги
Долгий путь домой

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Лекарь для захватчика

Романова Елена
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Лекарь для захватчика

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Ваше Сиятельство 9

Моури Эрли
9. Ваше Сиятельство
Фантастика:
боевая фантастика
попаданцы
стимпанк
аниме
фэнтези
5.00
рейтинг книги
Ваше Сиятельство 9

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Полковник Гуров. Компиляция (сборник)

Макеев Алексей Викторович
Полковник Гуров
Детективы:
криминальные детективы
шпионские детективы
полицейские детективы
боевики
крутой детектив
5.00
рейтинг книги
Полковник Гуров. Компиляция (сборник)

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Землянка для двух нагов

Софи Ирен
Фантастика:
космическая фантастика
5.00
рейтинг книги
Землянка для двух нагов