Чтение онлайн

на главную

Жанры

Философия и логика времени или О неполноте сознания
Шрифт:

Допустим, что мера множества Кантора равна нулю, т.е. нормирована: . Процесс деления его на части будем называть рангами. Тогда каждый ранг n дает собственную меру :

Понятно, что множество имеет мощность , так что общая единичная мера сохраняется. Тогда:

В таком разложении имеет мощность континуума , но при этом его мера в каждой точке равна нулю при том, что общая мера должна сохраниться. Это множество сингулярно. Именно таким в нашем преставлении является эфир, состоящий из световых точек, образующих идеальное пространство Минковского. Обобщенная -функция Дирака, сформулированная для точечных масс и зарядов, в каждой световой расходится, т.е. имеет в значении бесконечность,

но при локализации ее в любой окрестности координат дает единичный интеграл. В нашем понимании такая локализация вещественной окрестности возможна лишь на вышестоящем ранге, т.е. на некотором покрытии эфира мерой такой, что .

Если делить интервал времени до бесконечности, придав этой процедуре вид эффекта Доплера, то в пределе мы должны получить квант времени, равный нулю. Это и есть то настоящее, в котором Ахиллес догоняет черепаху. Если вернуться к аналогии с песочными часами, то наша цель измельчить песчинку до такого состояния, чтобы ее присутствие ничем не отличалось бы от ее отсутствия. Но сумма нулей, как уже говорилось, всегда равна нулю. А это и есть то, что Гегель определял как вечное настоящее. В физике это вечное настоящее, в котором нет времени и поэтому корреляции между двумя частицами происходят мгновенно, оказывается нелокальным миром, предсказанным ЭПР. Но наше самосознание и тождественный ему мир не могут существовать в таком состоянии. Мы живем в локальном релятивистском мире, где время движется, «набухает» по выражению Бергсона. А вместе с ним набухает, т.е. расширяется и наша Вселенная. И это пространственное расширение подобно обратному процессу деления временного интервала.

Это значит, что континуальный эфир лежит ниже границы математического анализа, на которой производится дифференцирование. В физическом смысле появление бесконечно малой величины равноценно появлению дискретного метрического пространства-времени. КМ говорит нам, что нижней границей этого пространства-времени является физический вакуум. Именно принцип неопределенности позволяет перейти от абсолютного покоя к движению, от нелокального мира к локальному. Благодаря этому принципу световая точка эфира становится точкой пространства-времени. В противном случае, как мы уже говорили, все в мире должно двигаться со скоростью света. Такая Вселенная не может существовать. Вакуум можно назвать буфером, который отделяет бытие от небытия.

Совершенно условно (а по-другому это, пожалуй, сделать нельзя) мы попробуем проиллюстрировать траекторию Ахиллеса в искаженном пространстве Минковского. Эта история становится историей другого мифического персонажа – Орфея, спускающегося в ад. В таком сюрреалистическом пространстве световой конус представлен сильно развернутым, чтобы как-то отделить его от физического пространства, хотя по сути они сливаются, делая подобными «застывшую» в мгновенном покое 3-мерную Вселенную и эфир, который мы представляем гиперплоскостью нулевой толщины. Ньютоновская модель была, можно сказать, инфантильной моделью эфира, в котором Вселенная логически невозможна. Она выстраивается над ним как класс страт M/t.

Рис.8

Также условно мы вынуждены выразить класс эквивалентностей ИСО/~, каждая из которых имеет собственную плотность времени с точностью до кванта времени и соответственно определенную энергию гравитационного поля, в котором метрический тензор не зависит от времени, образуя t-подобное поле Киллинга. Конечная подалгебра Ли этих полей должна распространяться и на плотности времени. Иначе говоря, класс ИСО/~ есть циклическая (коммутативная) группа плотностей, разложенных по степеням кванта времени с алгебраическим сложением по скоростям (ИСО) и групповым умножением по дифференциалам (плотности времени).

Геометрически этот класс составляет некий «бутон конусов» , каждый из которых состоит из мировых линий с квантовыми инерциальными метриками Бутон должен обладать странным свойством: , отражающим тот факт, что абсолютный покой в пространстве эквивалентен абсолютному покою во времени, поскольку в обоих случаях необходима

скорость света, как это и подразумевается в преобразованиях Лоренца. Ахиллес, т.е. Орфей, в свободном падении при равномерном ускорении a = const приближаясь к границе конуса, приближается к нелокальному миру вечного настоящего. Сингулярность, в которую он попадает, ничем не отличается от сингулярности, лежащий в основании Вселенной.

Рекурсивная форма преобразований Лоренца, представленная выше формулой (4.4), подразумевает, что имеется восходящая через упорядоченное множество (квантовых) ИСО череда интервалов, которая начинается в эфире, релятивизуя его, по выражению Эйнштейна, в пространство-время. Математически инерциальные квантовые метрики соответствуют циклической группе дифференциалов , образующих класс канонических накрытий (покрытий) континуума , который сам является сингулярностью (эфиром):

В отличие от классического определения покрытия как объединения семейства множеств, включающего в себя данное множество, принятое здесь словоупотребление имеет иной смысл. В классе канонических покрытий, каждое из которых полностью покрывает континуум , данное множество является нижней границей:

Было бы желательным определить «точки» (дифференциалы ) так, чтобы имело место , когда каждая восходящая точка является «оболочкой» (замыканием) предыдущей, так что . Топология такого класса пространств определялась бы открытыми шарами с радиусом . Положим, что каждому покрытию и метрике в нем топологически соответствует своя дифференциальная мера , такая что есть классическая мера Лебега для дифференциала и , :

(4.7)

Если нормировать шар как единичную сферу, то можно говорить о касательных пространствах покрытия в точках с линейным элементом , в котором интерпретируется как элемент длины (вектор смещения) . Далее для кривой от параметра t задается функция , по которой определяется метрика [21]. В этом случае мера определяет «соприкасающуюся индикатрису», а условие (2.2) требует, чтобы сама точка была световой и наследственно сингулярной, поскольку для нелокального эфира мера любого интервала равна нулю, что соответствует мгновенным квантовым корреляциям в нем:

Поскольку ускоренное движение в пространстве-времени по его физическому смыслу есть прохождение тела через множество ИСО, то его геодезическая S в «бутоне» должна быть лестницей, т.е. степенным рядом Тейлора и складываться из суммы N таких инерциальных метрик:

(4.8)

Переход от одной инерциальной метрики к другой происходит за счет квантового «приращения ускорения», которое, как это следует из его геометрического смысла, является s-подобным, т.е. световым. Из Лагранжевой механики нам известно, что ускорение не имеет производной. Экстремальный вариационный принцип Гамильтона требует, чтобы действие всегда происходило выше сингулярной мера континуума, т.е. геодезическая S должна скользить по покрытию эфира с классической мерой , никогда не падая в него. Падение в приводит к нелокальности. Здесь можно вспомнить теорему о разложении меры , которая гласит, что любую меру Лебега – Стилтьеса можно представить в виде суммы трех мер — дискретной, абсолютно непрерывной и сингулярной. Для лагранжиана, являющегося в общем случае разностью кинетической и потенциальной энергии , вытекает из экстремального принципа в уравнении Эйлера-Лагранжа требование сохраняться во времени:

Это означает в данном случае, что сохранение энергии эквивалентно сохранению меры (однородности на покрытии). Все прочие законы сохранения требует дополнительных симметрий на покрытии. Минимум действия заключается в минимальности покрытия . Это же требование выражено в условии Якоби для семейства экстремалей. Упоминание этого связано с тем, что позже мы придем к разбиению метрики Лоренца на метрику гиперболоида в ортогональных координатах СТО и ОТО и унитарной сфере в полярных координатах КМ, которая замечательным образом свяжет условие экстремалей с якобианом.

Поделиться:
Популярные книги

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

Блуждающие огни 3

Панченко Андрей Алексеевич
3. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни 3

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Бастард Императора. Том 6

Орлов Андрей Юрьевич
6. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 6

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Возвращение

Штиль Жанна
4. Леди из будущего
Любовные романы:
любовно-фантастические романы
8.65
рейтинг книги
Возвращение

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8