Чтение онлайн

на главную - закладки

Жанры

Философия Науки. Хрестоматия
Шрифт:

Высказывания такого рода могли, конечно, вызвать у многих впечатление некоего мистицизма, чуждого духу науки; поэтому я попытался в 1936 г. на упомянутом выше съезде устранить такого рода недоразумения и разъяснить, что речь идет единственно о том, чтобы попытаться выяснить для каждой области знаний условия для анализа и синтеза данных, получаемых из опыта. И все-таки я боюсь, что в этом отношении мне не слишком посчастливилось и едва ли удалось убедить моих слушателей: ведь для них тот факт, что расхождение во мнениях наблюдается даже среди физиков, уже сам по себе естественно заставляет сомневаться в необходимости столь далеко идущего отказа от привычных требований, предъявляемых к объяснению явлений природы. И, в частности, во время дискуссии с Эйнштейном, возобновившейся в Принстоне в 1937 г. (которая, впрочем, свелась к полушутливому спору о том, чью сторону принял бы Спиноза, если бы он переживал вместе с нами современное развитие физики), я особенно почувствовал необходимость крайней осторожности во всех вопросах терминологии и диалектики. (С. 88-90)

Тем временем

дискуссия о проблемах теории познания в атомной физике привлекала к себе внимание больше, чем когда-либо, и при комментировании взглядов Эйнштейна относительно неполноты квантовомеханического способа описания мне пришлось более подробно и непосредственно затронуть вопросы терминологии. При этом я особенно предостерегал против часто встречающихся в физической литературе оборотов вроде: «возмущение явлений наблюдением» или «придание атомным объектам физических атрибутов при помощи измерений». Такие выражения, правда, могли бы служить напоминанием о кажущихся парадоксах квантовой теории, но в то же время они способны создать путаницу, потому что слова «явления» и «наблюдения» так же, как слова «атрибуты» и «измерения», употребляются здесь в таком смысле, который едва ли совместим с разговорным языком и с практическим их определением.

В качестве более целесообразного способа выражения я советовал употреблять слово «явление» исключительно в связи с наблюдениями, произведенными в точно определенных условиях, включающих указания о всем опыте в целом. При такой терминологии проблема наблюдения освобождается от всякой неоднозначности, потому что ведь в действительных экспериментах все наблюдения выражаются в виде совершенно однозначных утверждений того же типа, как, например, регистрация точки попадания электрона на фотографическую пластинку. Кроме того, такой способ выражения особенно хорошо подчеркивает то обстоятельство, что правильное физическое толкование символического аппарата квантовой механики может дать только предсказания однозначного или статистического характера, относящиеся к неделимым явлениям, возникающим в классически определяемых физических условиях. Несмотря на все различия между физическими проблемами, породившими теорию относительности и теорию квантов, если сравнивать релятивистский и дополнительный способы описания в их чисто логическом аспекте, то бросается в глаза замечательное сходство в отношении отказа от придания абсолютного смысла обычным физическим атрибутам объектов. Также и пренебрежение атомной структурой самих измерительных приборов при описании реальных опытов одинаково характерно для теории относительности и для теории квантов. Малость кванта действия по сравнению с действиями, с которыми мы имеем дело в обычных опытах, включая установку и обслуживание физических приборов, столь же важна в атомной физике, как чудовищное число атомов, составляющих Вселенную, важно для общей теории относительности, требующей, как известно, чтобы размеры угломерных приборов были малы по сравнению с радиусом кривизны пространства.

В моем варшавском докладе я следующим образом комментировал употребление в теории относительности и теорию квантов математического аппарата, лишенного непосредственной наглядности:

«Даже математические аппараты обеих теорий, дающие, каждый в соответствующих рамках, надлежащие средства для охвата всего мыслимого опыта, обнаруживают глубокое сходство. Поразительная простота обобщения классических физических теорий, получаемого в одном случае при помощи многомерной геометрии и в другом случае при помощи некоммутативной алгебры, по существу основана в обоих случаях на введении условного символа ^. Абстрактный характер рассматриваемых формальных аппаратов одинаково типичен для теории относительности и для квантовой механики: в этом отношении это вопрос традиции, считать ли первую теорию завершением классической физики или же первым решительным шагом в глубоко идущем пересмотре системы наших понятий как средства для сопоставления наблюдений — шагом, к которому нас вынуждает современное развитие физики».

Конечно, верно то, что в атомной физике мы стоим перед рядом нерешенных фундаментальных проблем, в частности перед вопросом о зависимости между элементарной единицей электрического заряда и универсальным квантом действия. Однако эти проблемы связаны с рассмотренными здесь вопросами теории познания не теснее, чем законность релятивистского способа описания связана с еще не решенными задачами космологии. Как в теории относительности, так и в теории квантов мы имеем дело с новыми аспектами научного анализа и синтеза; в связи с этим стоит отметить, что даже во времена великой эпохи критической философии прошлого столетия дело шло только о том, в какой мере возможно априорное обоснование для координации нашего опыта в пространстве и во времени и для его причинной взаимосвязи, но никогда не возникал вопрос о рациональных обобщениях таких категорий человеческого мышления или о присущих им ограничениях.

Хотя за последние годы я несколько раз имел случай встретиться с Эйнштейном, но дальнейшие разговоры (которые всегда давали мне новую зарядку) до сих пор еще не привели нас к общей точке зрения на проблемы теории познания в атомной физике. Наши противоположные взгляды, может быть, наиболее четко выражены в одном из последних выпусков журнала «Диалектика», содержащем общую дискуссию по этим проблемам. Но так как я отдаю себе отчет во многих препятствиях, стоящих на пути взаимопонимания по вопросу, в котором позиция каждого сильно зависит от подхода и от других условий, то я приветствовал настоящий повод

для подробного обзора того развития, которое, как мне кажется, привело к преодолению серьезного кризиса в физической науке. Урок, который мы из этого извлекли, решительно продвинул нас по пути никогда не кончающейся борьбы за гармонию между содержанием и формой; урок этот показал нам еще раз, что никакое содержание нельзя уловить без привлечения соответствующей формы и что всякая форма, как бы пи была она полезна в прошлом, может оказаться слишком узкой для того, чтобы охватить новые результаты.

В таком положении как описанное, когда оказалось, что взаимопонимания трудно достигнуть не только между философами и физиками, по даже и между физиками различных школ, корень затруднений, несомненно, может иногда лежать в предпочтении определенной терминологии, соответствующей тому или иному подходу. В Копенгагенском институте, куда в те годы съезжался для дискуссий целый ряд молодых физиков из разных стран, мы имели обыкновение в трудных случаях утешаться шутками, среди которых особенно любимой была старая пословица о двух родах истины. К одному роду истин относятся такие простые и ясные утверждения, что противоположные им, очевидно, неверны. Другой род, так называемые «глубокие истины», представляют, наоборот, такие утверждения, что противоположные им тоже содержат глубокую истину. Развитие в новой области обычно идет этапами, причем хаос постепенно превращается в порядок: но, пожалуй, как раз на промежуточном этапе, где преобладают «глубокие истины», работа особенно полна напряженного интереса и побуждает фантазию к поискам твердой опоры. В этом стремлении к равновесию между серьезным и веселым мы имеем в личности Эйнштейна блестящий образец; и, выражая свое убеждение в том, что благодаря особенно плодотворному сотрудничеству целого поколения физиков мы приближаемся к той цели, где логический порядок позволит нам в большей мере избегать «глубоких истин», я надеюсь, что это убеждение будет воспринято в эйнштейновском духе и в то же время послужит извинением за отдельные высказанные на предыдущих страницах критические суждения.

Споры с Эйнштейном, составляющие предмет этой статьи, растянулись на много лет, в течение которых были достигнуты большие успехи в области атомной физики. Все наши личные встречи, долгие или короткие, неизменно производили на меня глубокое и длительное впечатление; и пока я писал этот очерк, я как бы спорил с Эйнштейном все время, даже и тогда, когда я разбирал вопросы, казалось бы, далекие от тех именно проблем, которые обсуждались при наших встречах. Что касается передачи разговоров, то здесь я, конечно, полагаюсь только на свою память; я должен также считаться с возможностью того, что многие черты развития теории квантов, в котором Эйнштейн сыграл такую большую роль, ему самому представляются в другом свете. Но я твердо надеюсь, что мне удалось дать ясное представление о том, как много для меня значила возможность личного контакта с Эйнштейном, вдохновляющее влияние которого чувствовалось всеми, кто с ним встречался. (С. 90-94)

ГЕРМАН ВЕЙЛЬ. (1885-1955)

Г. Вейль (Weyl) — немецкий математик, член Национальной академии США. После окончания Гёттингенского университета работал в политехническом институте Цюриха (1913-1930), затем в университете Гёттингена (1930-1933). После эмиграции в США (1933) работал в Принстонском институте перспективных исследований. Его научные интересы находились в области тригонометрических рядов и рядов по ортогональным функциям, теории функций комплексного переменного, дифференциальным и интегральным уравнениям. Лауреат Международной премии имени Н.И. Лобачевского. Значительное влияние на формирование миро воззрения Вейля оказали Канг, Фихте, Кассирер, Гуссерль и Эрхарт. В философии математики Вейль — сторонник интуиционизма.

Его основная методологическая позиция состоит в стремлении связать опыт прошлого, как в математике, так и в философии, с идеями современности, т.е. найти в сфере человеческого знания соразмерное, гармоничное и абсолютное. Математику он сравнивал с мифотворчеством, с музыкой и языком, считая ее глубоко человечной наукой. Математика для Вейля является, прежде всего, конструированием — активной творческой деятельностью человека, в процессе которой он строит определенные абстрактные объекты: символические, знаковые конструкции. Возможность осуществления процесса построения — главная идея Вейля в математике. Однако конструирование в математике он не считает самоцелью. Результаты этой деятельности человека должны быть обязательно сопоставлены с реальной действительностью, ибо истина, хотя бы и относительная, имеет силу лишь тогда, когда она объективна, т е. содержит только то, что в принципе может быть проверено экспериментально.' Выступал против сведения математики к логике, считая, что природа математики имеет своим началом процесс итерации и совершенную индукцию. Он выступал за приоритет интуиции над логикой в математике и науке в целом, полагая, что без интуиции невозможно не только проникновение в суть вещей, но и оперирование с простейшими знаками. Большое внимание уделяет Вейль и таким философским проблемам, как осмысление и интерпретация, понимание и объяснение. С его точки зрения, в обеих сферах научного знания (гуманитарного и естественно-научного) используются символически знаковое конструирование, процедуры репрезентации и интерпретации, в обеих — необходимы понимание и рефлексия не только над тем, что изучается, но и над тем, как человек получает те или иные знания. Основные работы Вейля по философии науки: «О философии математики» (М.;Л., 1934), «Симметрия» (М., 1968), «Избранные труды» (М., 1984), «Математическое мышление» (М., 1989).

Поделиться:
Популярные книги

Достигая Вершин

ZerKo
1. Достигая Вершин
Фантастика:
фэнтези
5.00
рейтинг книги
Достигая Вершин

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2

Хроники странного королевства. Шаг из-за черты. Дилогия

Панкеева Оксана Петровна
73. В одном томе
Фантастика:
фэнтези
9.15
рейтинг книги
Хроники странного королевства. Шаг из-за черты. Дилогия

Восхождение язычника 5

Шимохин Дмитрий
5. Проснувшийся
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Восхождение язычника 5

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Найдёныш. Книга 2

Гуминский Валерий Михайлович
Найденыш
Фантастика:
альтернативная история
4.25
рейтинг книги
Найдёныш. Книга 2

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Запрещенная реальность. Том 2

Головачев Василий Васильевич
Шедевры отечественной фантастики
Фантастика:
боевая фантастика
альтернативная история
7.17
рейтинг книги
Запрещенная реальность. Том 2

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Невеста драконьего принца

Шторм Елена
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Невеста драконьего принца