Философия Науки. Хрестоматия
Шрифт:
Число биологических проблем, ждущих своего теоретического осмысления и философского освещения, весьма значительно. Не подлежит сомнению, что среди них важнейшее значение имеет проблема правомочности сведения сложных явлений, с какими мы имеем дело в биологии, к элементарным уровням физики и химии. <...> (С. 202)
В биологических кругах теперь лишь обсуждается вопрос о правильном соотношении двух течений научной мысли в изучении живого мира, получивших наименования редукционизма и органицизма. <...> Редукционизм обозначает принцип исследования, основанный на убеждении, что путь к познанию сложного лежит через расчленение этого сложного на все более и более простые составные части и изучение их природы и свойств. Предполагается, что путем сведения сложного к совокупности
Во избежание неясности в толковании необходимо подчеркнуть, что здесь термин «редукционизм» используется нами для строго очерченного, специфического круга явлений. В соответствии с установившейся в естественно-научной литературе традицией этот термин применяется к изучению живых объектов, к трактовке жизненных функций. Он охватывает одновременно как метод исследования, по существу являющийся систематически развиваемым и углубляемым аналитическим подходом, так и цель, сводящуюся к ожиданию получения исчерпывающего знания о свойствах исходной целостности. Если первый аспект принимается полностью и безоговорочно, то в отношении второго требуются определенные ограничения, возникающие из условности и неполноты достигаемой степени познания. <...> (С. 220-203)
В противоположность редукционизму органицизм постулирует невозможность сведения сложного к простому и объектом исследования согласен принимать лишь ту или иную степень целостности, тот уровень организации, который адекватен характеру изучаемых функций и свойств.
Позиции органицизма основываются на постулате, формулирование которого иногда приписывается еще Платону. Согласно этому постулату, целое есть нечто большее, чем простая сумма его частей. <...> (С. 203) <...> В настоящее время проблема «сводимости» должна быть повернута в диаметрально противоположном направлении. Главенствующим должен стать вопрос: каким образом возникает сложное из простого, какие силы тут вступают в действие, каковы закономерности этого процесса, как создаются новые качества в результате прогрессирующего усложнения с переходом к новым, более высоким уровням организации? <...> (С. 204)
<...> задача сейчас в значительной степени должна состоять не в противопоставлении двух методологических подходов, а в поисках путей их синтеза или по крайней мере тех или иных форм комплементарности (т.е. взаимной дополнительности) — взаимоотношения частей сложных целостностей, что особенно настойчиво выдвигалось Н.Бором в качестве одного из ведущих начал в создании нашей современной картины мироздания, обладающего характером универсальности. (С. 204)
Совершенно иную, принципиально отличную методологическую значимость надлежит признать за ориентацией научного поиска, ведущей от наиболее примитивных, элементарных, в основном молекулярных уровней, где господствует современный редукционизм, в обратном направлении, к уровням все более возрастающей сложности организации, к системам, приобретающим новые свойства и функции. Задачу этого направления надо видеть в преодолении односторонности редукционизма, в познании того, каким образом происходит включение, интеграция элементов более примитивных в новые целостности, стоящие на более высокой ступени организационной иерархии, с иными степенями упорядоченности. Основной чертой при этом переходе от простого к сложному является именно его интегративный характер, возникновение определенной системы связей, утрата компонентами образующейся целостности некоторой части своих индивидуальных свойств, поглощение их свойствами интегрального целого. Соответственно этому для данного научнопознавательного направления может быть предложено наименование интегратизма. (С. 207)
Таким образом, можно говорить о трех элементах, совокупностью которых характеризуются взаимоотношения целого и части. Во-первых, это — возникновение взаимодействующей системы связей между частями целого. Во-вторых, утрата некоторых свойств части при вхождении в состав целого. В-третьих, появление у возникающей новой целостности новых свойств, обусловленных как свойствами составных частей, так и возникновением новых
Интегратизм — это не цель, а путь. Обеспечение правильного сочетания, целесообразного соотношения редукционизма и интегратизма является основой стратегии научного поиска в области познания явлений жизни на ближайшее время, а вернее, для всего будущего развития биологии как точной науки. Руководящим принципом при этом должно быть стремление строить схемы и понятия интегратизма, отправляясь от данных, получаемых на путях редукционизма, т.е. исходя из наиболее простых, элементарных условий шаг за шагом подниматься по восходящим ступеням иерархической градации, переходя ко все возрастающим степеням усложненности исследуемых систем. Внутреннее диалектическое объединение этих двух, казалось бы, диаметрально ориентированных линий биологического исследования и мышления должно характеризовать ближайший этап в подходах к познанию живого мира. (С. 221)
А.Н. Колмогоров родился в семье агронома в г.Тамбове. В 1925 году окончил Московский университет. С 1929 года - старший научный сотрудник НИИ математики и механики при МГУ и одновременно — зав. кафедрой математики в Индустриально-педагогическом институте им. К. Либкнехта (в дальнейшем влившемся в МГПИ им. В.И. Ленина). С 1931 года Колмогоров — профессор МГУ. В разные годы своей жизни он работал зав. отделением математики мехмата МГУ, деканом этого факультета, зав. кафедрой теории вероятностей и зав. лабораторией вероятностных и статистических методов, зав. кафедрой математической статистики и кафедры математической логики МГУ. Научно-педагогическую работу в МГУ совмещал с деятельностью в Математическом институте им. Стеклова АН СССР.
Колмогорову принадлежат работы в сферах теорий функций действительного переменного, конструктивной логики и математики, топологии, механики, теории дифференциальных уравнений, функционального анализа. Основополагающее значение имеют его работы по теории вероятностей. Внес вклад в разработку теории стрельбы, статистических методов контроля массовой продукции, проблем математического образования в высшей и средней школе.
Б.Л. Яшин
Фрагменты текста печатаются по изданию:
Колмогоров А.Н. Математика в ее историческом развитии. М.,1991.
Связь математики с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, а также из внутренних потребностей самой математики. Таково в основном было развитие теории функций комплексного переменного, занявшей к середине XIX в. центральное положение во всем математическом анализе. <...> (С. 60)
В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного и тензорного анализа. Постепенно все более обнаруживалось, что именно с точки зрения механики и физики «скалярные» величины, послужившие исходным материалом для формирования понятия действительного числа, являются лишь частным случаем величин многомерных. <...> (С. 61)
Таким образом, как в результате внутренних потребностей математики, так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется: в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т.п. При таком широком понимании терминов «количественные отношения» и «пространственные формы» приведенное в начале статьи определение математики применимо и на новом современном этапе ее развития. (С. 61-62)