Чтение онлайн

на главную - закладки

Жанры

Физика и магия вакуума. Древнее знание прошлых цивилизаций
Шрифт:

Последние 15-20 лет принесли сразу несколько открытий, которые могут помочь в решении данной проблемы или послужить критерием истинности найденного решения. Во-первых, наблюдения за полетом американских космических станций «Пионер — 10», «Пионер — 11», «Уллисс» и «Галилео» показали их более резкое торможение по сравнению с ожидаемым, будто Солнце притягивает станции к себе с большей силой, чем следует из законов Ньютона. Во-вторых, анализ движения звезд в рукавах спиральных галактик показал, что для них характерны более высокие скорости, чем следует из тех же законов Ньютона. В-третьих, возраст нашей Вселенной оказался равным 13.7 миллиардов лет с возможной погрешностью ±1%. И в-четвертых, была зафиксирована слабая

неравномерность реликтового излучения по небесной сфере, что явилось доказательством в пользу конечности размеров Вселенной. Высказан ряд гипотез для объяснений настоящих открытий и стоит ожидать, что дело не ограничится лишь теми догадками, которые уже высказаны.

В настоящее время наибольшей популярностью пользуются идеи темной материи и темной энергии. На роль кандидатов темной материи претендуют два класса: макро- и микро-объекты. Макрообъекты — это потухшие звезды, черные дыры и так называемые коричневые карлики — сгустки газа, у которых не хватило вещества, чтобы стать полноценными звездами. Микрообъекты — это элементарные частицы, реально существующие нейтрино и гипотетические нейтралино и аксионы. Расчеты астрономов показали, что при всех натяжках макрообъекты не могут объяснить наблюдаемые факты. Из микрообъектов нейтрино может отвечать в лучшем случае за (0.1;5)% всей массы Вселенной. Остаются гипотетические нейтралино и аксионы. Что касается темной энергии, астрономы связывают ее с космологической постоянной Эйнштейна, силой всеобщего отталкивания, которая была введена великим физиком в полученные им уравнения для получения картины статической Вселенной, казавшейся тогда ученому единственно правильной.

Сегодня ученые в основном пытаются решить проблему темной материи, а проблему темной энергии отложили на будущее как более сложную. Предполагается, что загадку темной материи можно решить, исходя из структуры физического вакуума. Но трудность состоит в том, что структура вакуума ученым как раз неизвестна. Если принять точку зрения, излагаемую в настоящей книге, что темная энергия космологии эквивалентна энергии физического вакуума, которая в свою очередь проявляет себя в форме кинетической энергии механики, задача значительно упрощается. Независимо от того, как расширяется Вселенная — ускоренно или замедленно — ее расширение ведет к уменьшению содержания вакуумной энергии в единице объема. Следовательно, должны меняться те параметры, которые определяют плотность вакуумной энергии: скорость света, гравитационная постоянная или радиус электрона.

В разделе 1.6 было высказано предположение, что наша Вселенная является огромной черной дырой, расширяющейся со скоростью света. Тогда уравнение движения границы Вселенной записывается как

(1.8.1)

Подставляя в данное уравнение зависимость радиуса черной дыры от скорости света и интегрируя полученное выражение во времени от 0 до ;, получим

(1.8.2)

где с0 — скорость света в самый начальный момент рождения Вселенной ;=0. Строго говоря, полученная формула не совсем точна, т. к. она не учитывает возможную зависимость гравитационной постоянной от скорости света. Но она полезна тем, что показывает в самом первом приближении тенденцию изменения одной из фундаментальных констант: скорость света со временем падает!

Рассмотрим самый простой вариант такой расширяющейся Вселенной, когда она не расходует свою энергию ни на какие процессы, так что суммарное количество ее энергии остается постоянным. Формула плотности вакуумной энергии была получена в разделе 1.6. Умножая плотность вакуумной энергии на объем Вселенной (обычная формула объема шара V = 4;R;/3, где R = 2;M/c; — радиус черной дыры), мы получаем общее количество энергии во Всленной

(1.8.3)

Если E = Const и M = Const, тогда

(1.8.4)

Подстановка полученной зависимости в формулы плотностей вакуумной

и гравитационной энергий дает

(1.8.5)

(1.8.6)

Чтобы найти зависимость электронного радиуса от скорости света, нужна некоторая подсказка насчет формы этой зависимости: логарифмическая, синусоидальная, экспоненциальная и т. д. И такая подсказка имеется. Одна из фундаментальных констант — диэлектрическая проницаемость — записывается в системе СИ как

(1.8.7)

Вследствие того, что одна из фундаментальных констант обратно пропорциональна квадрату скорости света, можно ожидать, что другие константы также должны быть прямо- или обратно-пропорциональны скорости света в целой степени. Возвращаясь к формулам (1.8.5) — (1.8.6) и учитывая только что сказанное, можно заметить, что плотности вакуумной и гравитационной энергии будут падать со временем одновременно лишь при re = Const (то есть электронный радиус не меняется во времени). Если re ~c;, где n = 1,2,3,...
– тогда будет уменьшаться во времени только плотность гравитационной энергии, но плотность вакуумной энергии останется постоянной или даже станет увеличиваться. При re ~c;; плотность вакуумной энергии будет со временем снижаться, зато плотность гравитационной энергии будет постоянна или расти. Поэтому

(1.8.8)

где К; = 2.22595;10(-19) м;/кг/сек — гравитационный фактор связи (численное значение фактора рассчитывается из тех значений ; и с, которые существуют сегодня). Изменяются лишь скорость света и гравитационная постоянная, но отношение между ними не меняется.

Поэтому скорость света и гравитационная постоянная не являются фундаментальными константами, т. к. истинно фундаментальные константы не могут меняться во времени. Однако, гравитационный фактор связи также нельзя признать за фундаментальный параметр из-за его сложной размерности. По-настоящему величина К; должна рассчитываться через длину, массу и время, которые определяют ее размерность. И вот эти длина, масса и время будут истинно фундаментальными константами.

Тот факт, что электронный радиус не меняется во времени, в то время как Вселенная состоит из частиц, наименьшая из которых является электроном, означает следующее: радиус зародыша Вселенной, из которого она начала развиваться, равен электронному радиусу, ибо Вселенная не может быть меньше одной из своих составляющих. И тогда мы освобождаемся от той сингулярности, которая так раздражает многих астрофизиков: развитие Вселенной из точки бесконечно малых размеров с бесконечно высокой плотностью.

Для нахождения зависимостей других псевдо-фундаментальных констант (постоянной Планка, массы и заряда электрона) будем использовать следующую цепочку рассуждений. Если мы сгруппируем несколько таких псевдо-фундаментальных констант в некоторый комплекс, имеющий размерность метра, секунды или килограмма, мы не будем знать, изменяется ли данный комплекс во времени, т. к. не известно, что представляют из себя эти метр, секунда и килограмм. Но если комплекс будет безразмерным, тогда можно считать, что он не меняется во времени — меняться нечему. Один из таких безразмерных комплексов записывается как

(1.8.9)

Так как re = Const и ; = K;c, тогда

(1.8.10)

где Km = 3.0382;10(-39) кг сек/м — массовый фактор связи (ищется подобно гравитационному фактору). Другие безразмерные комплексы

(1.8.11)

и

(1.8.12)

позволяют найти зависимости для расчета постоянной Планка и заряда электрона

(1.8.13)

(1.8.14)

где Kh = 7.37264;10(-51) кг сек — планковский фактор связи, Ke = 8.56265;10(-47) кг сек — зарядовый фактор связи. Можно составить массу других безразмерных комплексов из скорости света, параметров электрона, постоянной Планка и гравитационной постоянной, однако окончательный результат всегда будет соответствовать формулам (1.8.8) — (1.8.14).

Поделиться:
Популярные книги

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Книга пяти колец. Том 4

Зайцев Константин
4. Книга пяти колец
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Книга пяти колец. Том 4

Офицер империи

Земляной Андрей Борисович
2. Страж [Земляной]
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.50
рейтинг книги
Офицер империи

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Я сделаю это сама

Кальк Салма
1. Магический XVIII век
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Я сделаю это сама

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV