Физика и магия вакуума. Древнее знание прошлых цивилизаций
Шрифт:
Сегодня считается, что энергия внутри звезд выделяется в ходе термоядерных реакций синтеза атома гелия из двух атомов водорода. Побочным продуктом такой реакции являются частицы нейтрино, открытые на кончике пера Вольфгангом Паули еще в первой половине 20го века. Нейтрино обладает настолько малой массой покоя, что свободно проходит через самые толстые мишени. Акты взаимодействия между нейтрино и атомами мишени происходят так редко, что зафиксировать их чрезвычайно трудно. Поэтому ученые долго не могли измерить поток солнечных нейтрино и проверить свои догадки на природу источника звездной энергии. Необходимые для этой цели инструменты появились только в конце 60х годов прошлого века.
В 1969-1972 годах
Было высказано много догадок по этому поводу. Окончательно ученые склонились к выводу, будто термоядерные реакции в солнечном ядре идут в полном соответствии с теорией и температура внутри нашего светила соответствует расчетным значениям, а расхождение эксперимента Дэвиса и его последователей с ожиданиями обусловлено нейтриными осцилляциями: испускаемые Солнцем электроные нейтрино в ходе своего движенияляются трансформируются в мюонные и тау-нейтрино, которые на сегодняшний день не поддаются регистрации. Поэтому Земли достигает меньшее количество электроных нейтрино, чем испускается Солнцем.
Однако вскоре появились данные, которые заставили усомниться в таком объяснении. Во-первых, общая масса гелия во Вселенной оказалась в несколько раз меньше уровня, который должен иметь место в случае, если источником звездной энергии являются реакции синтеза. Во-вторых, разработанный несколько лет назад способ определения внутренней температуры звезды по частоте микропульсаций ее поверхности показывает, что температура солнечного ядра заметно меньше тех значений, при которых идут интенсивные термоядерные реакции. Поэтому следует признать, что внутри звезд действует иной механизм энерговыделения.
Масса Солнца составляет 1.99;10(30) кг. Если ежесекундное уменьшение скорости света равно -3.595;10(-10) м/сек, тогда внутри Солнца за счет преобразования физвакуума в материю каждую секунду появляется 2.38;10(12) кг нового вещества. Полное преобразование этого вещества в энергию даст 600-кратное превышение энерговыделения по сравнению с тем, что необходимо для нормальной деятельности светила. Но маловероятно, что новое вещество, появляющееся внутри Солнца, участвует в реакциях аннигиляции. Скорее всего, оно участвует в обычных термоядерных реакциях преобразования водорода в гелий. Термоядерная реакция дает выход энергии примерно в 264 раз меньше реакции аннигиляции. И тогда мы получаем всего 600/264 = 2.27-кратное превышение энерговыделения по сравнению с наблюдениями. Это можно считать очень неплохим совпадением настоящей гипотезы с реальным состоянием дел.
Похожий способ повышения скорости протекания термоядерных реакций используется в некоторых установках по исследованию термоядерного синтеза. Обычно температуру плазмы повышают с помощью электрических разрядов. Но электрический ток дает нежелательный побочный эффект: он уменьшает устойчивость плазмы. Поэтому ученые стали искать новые способы повышения выхода энергии из плазмы без нарушения ее устойчивости. И нашли. Им оказался впрыск в реакционную зону атомов нейтрального водорода. Скорость реакции синтеза определяется произведением температуры на плотность. Когда мы вводим в зону реакции новые порции вещества, скорость термоядерных реакций замаетно повышается за счет роста плотности даже при сравнительно низких температурах. Для Солнца вполне допустима такая же ситуация: появление новых порций вещества в солнечном ядре будет
С Землей творятся похожие вещи. Ученые полагают, что источником внутреннего земного тепла, которое плавит породы и обеспечивает вулканическую деятельность, являются реакции радиоактивного распада урановых и трансурановых элементов. Данное предположение можно легко проверить путем измерения концентраций урана, тория и калия — главных источников радиоактивного тепла — в составе мантии. Мантия выливается на поверхность Земли в форме вулканической лавы. Измеряя концентрацию этих элементов в составе остывшей лавы, можно узнать, насколько академическая точка зрения о природе внутриземного тепла соответствует действительности. Когда подобные измерения были выполнены, они показали ничтожно малую концентрацию радиоактивных элементов. Уран, торий и калий содержатся в достаточно больших количествах в составе гранитных пород континентальной коры, но в составе лавы и океанической базальтовой коры их концентрация падает на порядки. И тогда сразу встает вопрос: за счет чего земные недра раскалены до температур в десятки тысяч градусов?
Мне могут возразить тем, что уран и торий из-за своей высокой плотности накапливаются в земном ядре и потому в мантии их будет совсем немного. Да, уран и торий действительно могут концентрироваться в земном ядре. А как быть с калием? Его тяжелым элементом не назовешь и потому он в ядре накапливаться не будет. Но при этом калий несет такую же ответственность за генерацию внутриземного тепла, как уран и торий (конечно, если академическая гипотеза радиоактивной природы подземного тепла соответствует реальности).
Механизм выделения вакуумной энергии внутри Солнца и Земли (и возможно, внутри всех вращающихся объектов) обусловлен вращением этих космических тел. В разделе 1.3 писалось о возникновении центробежной и центростремительной сил вращающегося объекта как реакции вакуума на вносимую в него деформацию. Когда поток физвакуума разворачивается на 90 градусов в центральных частях вращающейся звезды или планеты, он в этот момент начинает взаимодействовать с окружающим веществом и отдавать ему свою энергию в форме тепла. А может ли физвакуум выделяться в форме вещества? Если может, тогда мы получаем разгадку проблемы звездной и внутриземной энергии.
Также имеются некоторые основания утверждать, что преобразование физвакуума в вещество может происходить внутри живых существ. В 1600 году французский химик Ян Баптист Гельмонт выполнил следующий эксперимент. Он брал обычную почву и в течение нескольких часов прокаливал ее в печи, уничтожая всю органику. Затем охлаждал почву и высаживал в ней росток ивы. Росток поливался только дистиллированной водой. Никаких удобрений не вносилось. Тем не менее, росток вырастал в полноценное дерево. По окончании опыта дерево срубали и взвешивали. Оказалось, что вес дерева составлял 74 кг, но при этом вес земли в кадке, где вырастало дерево, не менялся. Откуда появилось новое вещество?
Похожие опыты выполнил уже в наше время Пьер Беранже из Эколь Политехник, Париж. Он получил еще более невероятные результаты. Беранже проращивал семена бобовых в растворе марганца. По окончании опыта спектральный анализ показал полное отсутствие марганца в листьях, зато наличие там железа. Если же растения выращивались в растворе кальция, то на момент измерений анализ показывал присутствие фосфора и калия. Попытки скептиков объяснить полученные результаты улетучиванием одних элементов и поступлением других кажутся слишком натянутыми. Даже если в растворе содержались отдельные атомы посторонних элементов, их высокая концентрация в листьях не поддается такому упрощенному объяснению. Похоже, растения могут как-то взаимодействовать с физвакуумом, получая из него нужные им вещества.