Чтение онлайн

на главную

Жанры

Фундамент. Прочно и надежно

Крейс В. А.

Шрифт:

Данное свойство определяется коэффициентом морозостойкости – другими словами, отношением предела прочности при сжатии материала после испытания на морозостойкость к пределу прочности насыщенного водой материала. Из того, что здесь сказано о морозостойкости, надо помнить одно: морозостойкость обозначается буквами Мрз и цифрами – допустим, 50, т. е. Мрз 50. Эти обозначения указаны на упаковках материалов, которые покупают для строительства; и чем больше цифра, тем лучше.

Способность же материала впитывать и удерживать в своих порах влагу – это водопоглощение . Его определяют по массе или объему в процентном соотношении. По объему оно меньше 100 %, по массе – более 100 %. Примером могут служить теплоизоляционные материалы. При

насыщении материала водой ухудшаются его основные свойства, увеличиваются теплопроводность и средняя плотность, уменьшается прочность, так как связи между частицами ослабевают.

Водостойкость – степень снижения прочности материала при максимальном его водонасыщении. Определяется оно коэффициентом размягчения, а он, в свою очередь, равен отношению предела прочности в сжатом состоянии материала, который, кроме того, насыщен водой, к пределу прочности при том же сжатии, но в сухом состоянии.

При коэффициенте размягчения не меньше 0,8 материалы относят к водостойким и применяют в тех конструкциях, которые способны работать не только в обычных условиях, но и в воде, а также в местах с повышенной влажностью. К ним можно отнести железобетонные изделия, стеновые блоки, красный глиняный кирпич. Свойство материала терять находящуюся в его порах влагу – это влагоотдача . Она определяется количеством воды в процентном соотношении (по массе или объему), которое теряет материал естественным образом в сутки при относительной влажности. Данным свойством обладают многие строительные изделия. Например, стеновые блоки и панели, которые в процессе возведения здания, как правило, имея повышенную влажность, в обычных условиях высыхают; другими словами, вода испаряется из них до тех пор, пока не установится равновесие между влажностями материала и окружающего воздуха.

Способность материала пропускать воду под давлением называют водопроницаемостью . Она определяется количеством воды, которая проходит в течение 1 ч через образец площадью 1 м2 и толщиной 1 м при условии, что давление ее постоянное.

Битум, стекло, сталь, бетон специально подобранного состава, во-первых, являются плотными материалами, а во-вторых, не относятся к водопроницаемым.

Свойство пористых материалов поглощать влагу из воздуха называют гигроскопичностью . Теплоизоляционные материалы, древесина, кирпичи полусухого прессования могут поглощать достаточно большое количество воды; при этом их масса увеличивается, а прочность снижается. Они являются гигроскопичными материалами. Для древесины применяют защитные покрытия. Кирпич сухого прессования разрешается использовать лишь в зданиях и помещениях с пониженной влажностью воздуха. Если необходимо обложить подвал или погреб, рекомендуется применять красный глиняный кирпич, потому что он фактически не впитывает влагу, так как прошел процесс обжига.

Свойство материала передавать через толщу теплоту при наличии разности температур на поверхности называют теплопроводностью. Она определяется количеством теплоты, которая проходит через образец толщиной 1 м и площадью 1 м2 за 1 ч; причем разность температур противоположных поверхностей образца составляет 1 °C.

Данное свойство материалов зависит от таких факторов, как их строение и природа, влажность, пористость, а также от средней температуры, при которой происходит передача теплоты. Материалы крупнопористого и кристаллического строения являются наиболее теплопроводными. Кроме того, влажные материалы более теплопроводны, чем сухие. Это объясняется тем, что теплопроводность воды в 25 раз выше теплопроводности воздуха.

Теплопроводность увеличивается при повышении температуры, что имеет значение для теплоизоляционных материалов, которые применяют для изоляции трубопроводов, котельных установок и т. д. От нее зависит толщина стен и перекрытий отапливаемых зданий. Примерами могут служить кирпич, пенобетон, фибропенобетон.

Свойство материала поглощать при нагревании определенное количество теплоты и выделять

ее при охлаждении называется теплоемкостью . Удельная теплоемкость, которая равна количеству теплоты, необходимому для нагревания 1 кг материала на 1 °C, считается показателем теплоемкости. Например, удельная теплоемкость древесины – от 2,4 до 2,7, искусственных каменных материалов – от 0,75 до 0,92, воды – 4,187, стали – 0,48 и т. д.

Данное свойство необходимо учитывать при расчетах теплостойкости стен и перекрытий отапливаемых зданий, при расчете печей, подогрева составляющих растворной и бетонной смесей для зимних работ, так как оно может сказаться на качестве материалов и выполненных работ.

Способность материала ослаблять интенсивность звука при прохождении его через материал называют звукопоглощением . Степень поглощения звука характеризуется коэффициентом звукопоглощения. Звукопоглощение материала зависит от его структуры. Поглощают звук лучше материалы с открытыми порами, а материалы с замкнутыми порами поглощают его намного хуже. Многослойные стены и перегородки с чередующимися слоями пористых и плотных материалов обладают хорошими звукоизолирующими свойствами.

Свойство материала пропускать звуковую волну называют звукопроницаемостью . Она оценивается коэффициентом звукопроницаемости, характеризующим относительное уменьшение силы звука при прохождении его через толщу материала.

Свойство материала не деформироваться при воздействии высоких температур называют огнеупорностью . По степени огнеупорности все материалы можно подразделить на огнеупорные (шамотный кирпич), тугоплавкие (тугоплавкий кирпич), легкоплавкие (керамический кирпич).

Свойство материалов противостоять действию высоких температур называют огнестойкостью . Материалы по степени огнестойкости делят на:

несгораемые.

Материалы, которые не тлеют, не обугливаются, не воспламеняются под действием высоких температур и огня. Примерами могут служить сталь, бетон, кирпич;

трудносгораемые. Материалы, которые тлеют, обугливаются, а после удаления источника огня эти процессы прекращаются. Примерами могут служить асфальтовый бетон, металл, фибролит;

сгораемые. Материалы, которые тлеют, воспламеняются, продолжают гореть после удаления огня. Примерами могут служить пластмассы, толь, рубероид, дерево.

Кроме основных физических свойств, строительные материалы обладают механическими (это разновидность физических свойств).

К этим свойствам относят прочность, пластичность, упругость, хрупкость, сопротивление удару, твердость, износ, истираемость.

Способность материала сопротивляться разрушению при действии внешних сил, вызывающих в нем внутренние напряжения, называют прочностью . В свою очередь, прочность материала определяется пределом прочности при сжатии, изгибе, растяжении. Например, керамический кирпич, тяжелый бетон, облицовочный кирпич, ячеистый бетон будут иметь разную прочность при сжатии, растяжении и изгибе. Кроме того, предел прочности стеновых материалов при сжатии и изгибе определяют по ГОСТу 8462–85, можно воспользоваться и этим стандартом.

Свойство материала изменять под нагрузкой форму и размеры без образования разрывов и трещин и сохранять изменившиеся форму и размеры после удаления нагрузки называют пластичностью . Ее можно считать противоположностью упругости. Примерами пластичных материалов могут служить глиняное тесто, битум и т. д. Это свойство поможет при приготовлении строительного раствора для кладки, потому что он должен быть пластичным, легко расстилаться и разравниваться.

Свойство материала деформироваться под нагрузкой и принимать после снятия нагрузки первоначальные форму и размеры называют упругостью . Сталь, древесина, резина относятся к упругим материалам.

Поделиться:
Популярные книги

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Первый среди равных. Книга IV

Бор Жорж
4. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга IV

Неучтенный. Дилогия

Муравьёв Константин Николаевич
Неучтенный
Фантастика:
боевая фантастика
попаданцы
7.98
рейтинг книги
Неучтенный. Дилогия

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Потусторонний. Книга 2

Погуляй Юрий Александрович
2. Господин Артемьев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Потусторонний. Книга 2

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Законник Российской Империи. Том 3

Ткачев Андрей Юрьевич
3. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
5.00
рейтинг книги
Законник Российской Империи. Том 3

Ваше Сиятельство 7

Моури Эрли
7. Ваше Сиятельство
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Ваше Сиятельство 7

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Младший сын князя. Том 4

Ткачев Андрей Юрьевич
4. Аналитик
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Младший сын князя. Том 4