Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Последующее изучение вопроса другими авторами подтвердило эти наблюдения и показало, что различия параметров потенциалов действия тесно связаны с другими различиями между нейронами [327]. Здесь снова уместно сослаться на результаты Н. Т. Пархоменко. По его данным, задержку на нисходящей фазе потенциала действия проявляют нейроны типа «б», т. е. те идентифицируемые клетки, у которых потенциал покоя равен (-35) — (-40) мВ. По подсчётам Н. Т. Пархоменко, потенциал действия в этих клетках имеет следующие параметры: амплитуда 90-105 мВ, овершут до 60 мВ, длительность 15 — 25 мсек. В отличие от этого, в нейронах типа «а» потенциал имеет следующие параметры: амплитуда 80-90 мВ, овершут 20-35 мВ, длительность 4-9 мсек, задержка на нисходящей фазе отсутствует. Клетки двух типов различаются по вольт-амперным характеристикам, по активности внутриклеточного калия и по ряду других показателей. Наконец, что особенно существенно, Н. Т. Пархоменко убедительно показал, что в этих двух типах различны ионные механизмы генерации соматических

потенциалов действия. Если нейроны, относящиеся к типу «а», инактивируются и перестают генерировать в безнатриевых растворах, то в нейронах типа «б» способность к генерации в этих условиях сохраняется благодаря входящему току ионов кальция [45, 46].

Продолжая работу в этом направлении, мы нашли, что по типу «а» себя ведут клетки группы F, быстро теряющие возбудимость в безнатриевых растворах. Клетка ППа4, медленно теряющая возбудимость, но не способная генерировать кальциевые потенциалы, представляет особый тип и, возможно, сходна с теми неидентифицированными нейронами, изученными В. Д. Герасимовым [10], которые каким-то образом используют малые количества ионов натрия для создания эффективного градиента. Наконец, изучение клеток, проявляющих кальциевые потенциалы действия, привело нас к предположению, что, возможно, эти потенциалы являются секреторными. Белые клетки, для которых особенно характерна совокупность биофизических свойств, выделенных Н. Т. Пархоменко как тип «б», являются, судя по нашим электронно-микроскопическим данным, нейросекреторными клетками с гранулами пептидергического типа. Они имеют множество соматических отростков, из которых нейросекрет, по-видимому, секретируется в оболочку ганглия или под неё. Если это так, то соматическая мембрана должна обладать свойствами секреторной, пресинаптической мембраны [24].

Любопытно, что через два года точно такой же вывод был сделан французскими авторами, исследующими нейроны аплизии; на основании совсем другой системы экспериментов они также заключили, что соматическая мембрана, судя по поведению ионов кальция, может рассматриваться как модель пресинаптической мембраны [299]. В самом деле, известно, что мембрана пресинаптического окончания в условиях ингибирования натриевой проводимости развивает при деполяризации регенеративный спайкоподобный процесс, связанный с входом в окончание ионов кальция [207]. Обращают на себя внимание черты сходства этого процесса с потенциалом действия в клетках типа «б», в частности в нейронах группы D и ППа1: задержка на нисходящей фазе, её «утомление» в ходе залпа и т. д.

Отмеченными выше различиями не исчерпываются все возможные варианты потенциалов действия. Разными авторами неоднократно отмечалось, что для части клеток характерно наличие длительной, около 300 мсек, следовой гиперполяризации, имеющей тенденцию к суммации в ряду следующих друг за другом потенциалов. Этим признаком обладают, например, нейроны ППл1, ЛПл1, В4. В одних клетках (их много) соматическому потенциалу предшествует аксонная компонента, в других (например, ППа1) её нет. Имеются нейроны, в которых, напротив, сома, по-видимому, невозбудима и регистрируется только однокомпонентный потенциал действия аксонной природы. У части таких клеток амплитуда этого потенциала претерпевает резкие изменения под воздействием изменений в спонтанном синаптическом притоке (например, В6). То же, но в усложненном виде, имеет место в клетках с несколькими аксонами, где потенциалы действия генерируются в каждом из аксонов. Скопление таких клеток представлено на вентральной поверхности висцерального ганглия у выхода анального нерва.

Спонтанный синаптический приток. Картина постсинаптических потенциалов, регистрируемых внутриклеточным электродом, весьма характерна для каждого нейрона, и эти характеристики закономерно повторяются от препарата к препарату. Мы не знаем в ганглиях виноградной улитки нейронов, полностью лишённых постсинаптической активности, и указания некоторых авторов на наличие таких нейронов полагаем ошибкой. В простейших случаях синаптический приток представлен однородными ВПСП. Примером могут служить нейроны группы F, причём у соседних нейронов, относящихся к этой группе, интенсивность синаптического притока бывает очень разной; обычно у этих клеток ВПСП имеют такую высокую частоту, что они, сливаясь, создают определённый уровень деполяризации, который в свою очередь определяет частоту генерации потенциалов действия. В других нейронах, получающих также лишь ВПСП, они приходят относительно редко и не сливаются; такие клетки склонны молчать или изредка генерируют, в ответ на приходящие ВПСП,нерегулярные спайки. В качестве примеров можно назвать обе гигантских клетки плевральных ганглиев. Далее, картина может осложняться тормозным притоком, который в разных клетках выражен по-разному: нерегулярные отдельные ТПСП относительно небольшой амплитуды (такие, например, характерны для многих нейронов педальных ганглиев); приходящие залпами «гигантские» ТПСП (например, в клетках В6, ППа4); ТПСП обоих названных типов в одном и том же нейроне (например, ППа1). Многими авторами наблюдались и описывались двуфазные ПСП. Что касается клеток висцерального комплекса ганглиев, здесь, по нашему мнению, двуфазными в некоторых препаратах бывают те самые ПСП, которые в других препаратах проявляют себя как «гигантские» ТПСП. По какой причине

у некоторых улиток эти потенциалы лишены первой, возбуждающей фазы, нам неясно.

Реакция клетки на поляризацию мембраны. Рассмотренный нами способ дифференцировать клетки на основании их ответов на инъекцию тока через внутриклеточный микроэлектрод [283] является развитием идеи, обсуждавшейся рядом авторов. Мы предложили классифицировать нейроны как осциллирующие и неосциллирующие, различая в каждой из этих категорий две подгруппы.

Классификация основана прежде всего на выявлении способности или неспособности клетки длительно генерировать потенциалы действия. Инъекция деполяризующего тока является в этом случае универсальным тестом, применимым как к активным, так и к молчащим клеткам. Осциллирующие нейроны после начального частого залпа длительно удерживают активность, частота которой зависит от уровня деполяризации. Неосциллирующие после начального залпа умолкают.

Активность осциллирующих нейронов бывает мономодальной и бимодальной. У мономодальных осцилляторов, в отличие от бимодальных, импульсный разряд не прерывается периодическими паузами. Пример мономодальных осцилляторов — нейроны группы F. Бимодальные осцилляторы в свою очередь можно разделить на две категории. У некоторых клеток паузами бывают разделены небольшие группы импульсов, причём в течение паузы клетка продолжает периодически генерировать пейсмекерные потенциалы, не достигающие порогового уровня для генерации потенциалов действия. Инъекция деполяризующего тока почти не влияет на частоту импульсов в группе и на их число, но делает паузы более короткими. Такие клетки генерируют пейсмекерный потенциал мономодально и лишь из-за колебаний возбудимости активность выглядит бимодальной. К этой категории относятся клетки ППа2, В5. Совершенно иной характер имеет активность в «настоящем» бимодальном осцилляторе — нейроне ППа1. Здесь разряд имеет форму периодических залпов, причём число импульсов в залпе, обычно равное при комнатной температуре 10 - 20, может быть и очень большим, до нескольких десятков. В течение залпа клетка всё более деполяризуется, затем наступает волна гиперполяризации, знаменующая собой начало паузы. В ходе паузы постепенно развивается деполяризация, вызывающая начало нового залпа и продолжающаяся до новой волны гиперполяризации. Инъекция деполяризующего тока увеличивает и продолжительность залпа, и частоту импульсов в нем. Такой тип бимодальной активности есть свойство, внутренне присущее клетке и ярко выраженное у нейрона ППа1 [283, 289]. В сглаженной форме, однако, мы изредка наблюдали такое поведение у клеток группы D.

Неосциллирующие нейроны также неодинаковы. Одни из них в ответ на инъекцию деполяризующего тока умолкают после начального залпа вследствие аккомодации, т. е. без заметного сдвига мембранного потенциала. Таковы клетки группы Е. В других клетках генерация потенциалов действия инактивируется прогрессирующей деполяризацией; после выключения тока клетки долго не могут вернуться к прежнему уровню мембранного потенциала, что говорит о слабости реполяризующего механизма. Так ведут себя, например, однородно крупные клетки мезоцеребральной области церебральных ганглиев.

Карпентер [112] недавно заново проанализировал сравнительные данные о различиях между осциллирующими (пейсмекерными) и неосциллирующими (непейсмекерными) нейронами, а также между разными формами эндогенной активности нейронов. Он, в частности, отмечает, что пейсмекерные нейроны гораздо слабее аккомодируются к приложенному току (о чём уже говорилось выше); мнение Карпентера о том, что у пейсмекерных нейронов потенциалы действия генерируются сомой, в отличие от непейсмекерных, генерирующих аксоном, представляется нам слишком категорическим: скорее, это верно лишь для некоторых специальных случаев. Карпентер приходит также к заключению, что ни одно из предложенных объяснений механизма медленных осцилляции, представленных в залповых нейронах, нельзя признать удовлетворительным. В связи с этим интересны данные о том, что у нейронов, имеющих генератор медленных волн (т. е. у залповиков), постоянная времени мембраны, измеряемая на толчках гиперполяризующего тока, примерно в пять раз больше, чем у незалповых нейронов того же препарата (эксперименты на нейронах гастропод); эти различия исчезают в условиях охлаждения (15° и ниже), когда перестаёт работать и генератор медленных волн [325].

Биофизические характеристики клеточной мембраны. Не рискуя рассуждать о предмете, требующем специальных знаний, ограничимся несколькими замечаниями. Н. Т. Пархоменко [45, 46] обнаружил достоверную связь между входным сопротивлением нейрона и его способностью к генерации потенциалов действия в безнатриевых растворах; эта способность, как отмечено выше, совершенно различна в разных идентифицируемых клетках. Тот же автор отметил, что клетки примерно одинакового размера могут сильно различаться по величине входной ёмкости, и отнёс эти различия за счёт разной площади поверхностной мембраны (вообще, нередко площадь мембраны, а вслед за тем удельное сопротивление вычисляют основываясь на измерении постоянной времени). Здесь, однако, нужна осторожность, учитывая хотя бы только что упомянутые данные о температурной зависимости постоянной времени мембраны у залповых нейронов. Если говорить о конкретных клетках, то, по нашим наблюдениям, постоянная времени велика у клеток пептидергического типа (ППа1, группы А, В, D).

Поделиться:
Популярные книги

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Таня Гроттер и магический контрабас

Емец Дмитрий Александрович
1. Таня Гроттер
Фантастика:
фэнтези
8.52
рейтинг книги
Таня Гроттер и магический контрабас

Этот мир не выдержит меня. Том 2

Майнер Максим
2. Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Этот мир не выдержит меня. Том 2

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Прогулки с Бесом

Сокольников Лев Валентинович
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Прогулки с Бесом

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Николай I Освободитель. Книга 5

Савинков Андрей Николаевич
5. Николай I
Фантастика:
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 5

Отличница для ректора. Запретная магия

Воронцова Александра
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отличница для ректора. Запретная магия