Чтение онлайн

на главную - закладки

Жанры

Хаос. Создание новой науки
Шрифт:

Трудность заключалась в том, чтобы решить, какие из множества задействованных в процессе образования снежинки физических сил следует принять во внимание, а какими вполне можно пренебречь. Долгое время считалось, что наиболее важным является рассеивание теплоты, высвобождающейся при замерзании воды. Но физическая природа тепловой диффузии не могла до конца объяснить те образы, которые наблюдали ученые, рассматривая снежинки под микроскопом или выращивая их в лаборатории. Не так давно был разработан метод, позволяющий учесть иной процесс, а именно поверхностное натяжение. Сердцевина новой модели снежинки являет собой самую сущность хаоса: хрупкий баланс между стабильностью и неустойчивостью,

мощное взаимодействие сил атомарного и обычного, макроскопического уровней.

Там, где рассеивание теплоты создает преимущественно неустойчивость, поверхностное натяжение порождает стабильность. Действие этой силы ведет к тому, что вещество приобретает более плавные, похожие на стенки мыльного пузыря, очертания, поскольку для создания грубо очерченных поверхностей требуется энергия. Баланс указанных тенденций находится в зависимости от размера кристалла. В то время как рассеивание является по преимуществу крупномасштабным, макроскопическим процессом, поверхностное натяжение сильнее действует на микроскопическом уровне.

Традиционно допускалось, что для целей практики можно пренебречь действием поверхностного натяжения, поскольку оно очень незначительно. Но это не совсем верно. Происходящее в ничтожных масштабах могло сыграть решающую роль. Именно на микроуровне поверхностные эффекты обнаружили бесконечную чувствительность к молекулярной структуре отвердевающего вещества. В случае со льдом преобладание широко известной шестилучевой формы снежинки диктуется естественной симметрией молекул. К своему изумлению, ученые выяснили, что сочетание стабильности и неустойчивости усиливает микроскопический процесс, создавая почти фрактальное кружево, из которого и получаются снежинки. Причем математическое описание процесса дали не те, кто изучал атмосферу, а физики-теоретики и металлурги. Последними руководил свой интерес: молекулярная симметрия металлов различна, а значит, различна и форма характерных кристаллов, которые определяют прочность сплава. Но математика здесь та же, ибо законы формирования таких моделей универсальны.

Сильная зависимость от начальных условий служит целям созидания, а не разрушения. Пока растущая снежинка летит к земле, с час или около того паря в токах воздуха, ветвление ее лучиков в каждый конкретный момент зависит от таких факторов, как температура, влажность и загрязнение атмосферы. Шесть кончиков одной-единственной снежинки, которая занимает в пространстве не более миллиметра, подвергаются воздействию одной и той же температуры, а поскольку законы роста и развития детерминистские по своей сути, в снежинке появляется близкая к идеалу симметрия. Но природа турбулентного воздушного потока такова, что ни одна снежинка не повторяет маршрут предыдущей. В итоге конечная форма снежного кристалла отображает все изменения погодных условий, действию которых он подвергался, а количество их комбинаций может быть безграничным.

Физики любят повторять, что снежинки — неравновесный феномен. Это продукт дисбаланса в перетекании энергии от одного фрагмента природы к другому. Благодаря такому перетеканию на контуре кристалла появляется острие, потом целое множество ответвлений, которые, в свою очередь, превращаются в сложную, невиданную структуру. Открыв, что неустойчивость такого рода подчиняется всеобщим законам хаоса, ученые смогли применить те же методы ко множеству проблем физики и химии и теперь считают, что подошла очередь биологии. Это отчасти подсознательное ощущение. Наблюдая за компьютерным моделированием роста дендритов, ученые воображают морские водоросли, оболочки клеток, делящиеся и развивающиеся организмы.

К настоящему времени открыто множество путей изучения

хаоса, начиная с невидимых микроскопических частиц и заканчивая доступной глазу сложностью. В математической физике теория бифуркаций Файгенбаума и его коллег получила распространение среди ученых Соединенных Штатов Америки и Европы. В абстрактных областях теоретической физики положено начало исследованию новых проблем, таких как еще не решенный вопрос о квантовом хаосе: приемлет ли квантовая механика хаотический феномен механики классической? Изучая движение жидкостей, Либхабер соорудил гигантскую емкость с гелием, в то время как Пьер Хоэнберг и Гюнтер Алерс занялись анализом распространения причудливых волн конвекции. В астрономии специалисты по хаосу создают необычные модели гравитационной неустойчивости, чтобы истолковать происхождение метеоритов — необъяснимое выталкивание астероидов из области Солнечной системы, расположенной за орбитой Марса. Биологи и физиологи используют физику динамических систем для изучения иммунной системы человека с ее миллиардами компонентов и человеческого мозга, обладающего способностью к познанию, воспроизведению и распознаванию объектов. Они также размышляют над эволюцией в надежде отыскать всеобщие механизмы адаптации живых существ.

«Эволюция — это хаос с обратной связью», — утверждал Джозеф Форд. Да, Вселенная воплощает в себе беспорядочность и диссипацию. Но беспорядочное, заключающее в себе некую тенденцию, может порождать удивительную сложность.

«Бог играет в кости со Вселенной, — таков был ответ Форда на известный вопрос Эйнштейна, — не брезгая, впрочем, обманом. И сейчас главная цель физики состоит в том, чтобы выяснить, какими правилами руководствуется Всевышний, а затем использовать их в собственных целях».

Такие идеи двигают вперед коллективную научную инициативу. И все же ни философия, ни доказательства, ни опыты не влияют на отдельных ученых, которых наука должна прежде всего и всегда обеспечивать пригодным для работы инструментарием. В некоторых лабораториях традиционные методы уже изживают себя, дорогое оборудование не оправдывает возложенные на него надежды. Обычная наука, как выразился Кун, «сбилась с пути, и ей больше не удается обходить аномальные явления». Веяния хаоса не могли возыметь влияния на каждого ученого, пока метод новой дисциплины не доказал свою необходимость.

В каждой области есть свои примеры. В экологии таковым стала деятельность Уильяма М. Шаффера, последнего из учеников Роберта Макартура, лидера этой дисциплины в 1950-60-х годах. Макартур выработал понятие о природе, которое стало прочной основой идеи естественного баланса. Построенные ученым модели предполагали, что существуют определенные состояния равновесия, возле которых колеблются популяции растений и животных. С точки зрения Макартура, балансу в природе присуще то, что можно назвать почти моральным качеством: состояния равновесия в его моделях обеспечивали наиболее рациональное использование пищевых ресурсов, при котором потери минимальны. Природа добра, если оставить ее в покое.

Два десятилетия спустя последний студент Макартура понял, что экология, базирующаяся на идее равновесия, обречена. Общепринятые модели, с присущим им уклоном в сторону нелинейности, не оправдали ожиданий. Природа куда более сложна. Вместо равновесия ученый увидел хаос, «такой живой и немного пугающий». Хаос способен подорвать самые устоявшиеся предположения экологов, поведал он коллегам. «То, что мы в нашей области считаем основными понятиями, подобно легкой дымке перед яростным напором бури — в данном случае настоящего нелинейного шторма».

Поделиться:
Популярные книги

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Предатель. Ты променял меня на бывшую

Верди Алиса
7. Измены
Любовные романы:
современные любовные романы
7.50
рейтинг книги
Предатель. Ты променял меня на бывшую

Отрок (XXI-XII)

Красницкий Евгений Сергеевич
Фантастика:
альтернативная история
8.50
рейтинг книги
Отрок (XXI-XII)

По машинам! Танкист из будущего

Корчевский Юрий Григорьевич
1. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.36
рейтинг книги
По машинам! Танкист из будущего