Чтение онлайн

на главную - закладки

Жанры

Химические и нефтяные аппараты с мешалками
Шрифт:

Под степенью свободы понимается определение положения вала относительно системы координат с помощью одной координаты. Этой одной координате соответствует одна мешалка на валу.

Если колебания вала возникают из-за колебаний упругих внутренних сил, колебания являются свободными или собственными. Если под действием внешней силы по закону с заданной периодичностью, то колебания являются вынужденными.

Положительным расчетом вала на колебания является результат, по которому частота собственных колебаний не совпадает и не имеет близкого

значения с критической частотой, т.е. с частотой вынуждающей силы.

При расчета по теории колебаний рассчитываются собственные и критические частоты. В случае их совпадения изменяется жесткость вала или устанавливается другая частота вынужденных колебаний.

Изменение жесткости вала связано с изменением статической деформации, которая связана со свободной частотой по формуле:

На резонансной частоте амплитуда вынужденных колебаний неограниченно возрастает при отсутствии внешних сопротивлений:

При наличии ограничителей колебаний, при резонансе амплитуды не превышают какого-либо максимального значения. Для валов мешалок в условиях отсутствия элементов, ограничивающих колебания, важно обеспечить расчетом отсутствие совпадения частот свободных колебаний и резонанса. При разгоне вала до рабочих оборотов, происходит быстрый переход через резонансную частоту, не оказывающий влияния на вал.

Для значений частот, близких к резонансной возникают биения вала. Для случая вала мешалки при отсутствии сопротивлений биению, колебания имеют вид:

Затухающие биения при отходе от частот, близких к резонансным имеет вид:

Для получения формулы вынужденных колебаний с учетом сопротивлений к внешним силам добавляют периодическую возмущающую силу

(к внешним силам прибавляется сила
препятствующая движению).

Упругие колебания системы с одной степенью свободы в общем случае (вторые два члена формулы относятся к вынужденным колебаниям):

Уравнения для всех трех приведенных случаев колебаний можно получить из него как частные случаи:

– собственные колебания без учета сопротивлений (f = 0, q = 0)

– собственные затухающие колебания (вынуждающая сила W = 0, )

– вынужденные

колебания без учета сопротивлений (, , в формуле получается, что первый член является вынужденными колебаниями, остальные два члена свободными колебаниями)

Формула вынужденных колебаний получается из вторых двух членов уравнения упругих колебания после отбрасывания свободных колебаний и замены в формуле

Т.е. вынужденные колебания являются гармоническими (так же как и собственные)

Амплитуда вынужденных колебания находится возведением в квадрат указанных двух членов формулы и последующим сложением:

Как видно из формулы амплитуда вынужденных колебаний пропорциональна возмущающей силе, зависит от сравнительной частоты свободных р и вынужденных m колебаний, определяющих затухание свободных колебаний f.

При m<p амплитуда С приближается к статической деформации вала.

При m=p амплитуда С достигает больших величин, наступает явление резонанса вала.

В отсутствии сопротивлений произойдет разрушение вала через определенный промежуток времени.

При m>p амплитуда С стремиться к нулевому значению, колебания отсутствуют.

Приведем график амплитуд колебаний:

Как видно из рисунка, при резонансной частоте происходит разрыв кривой прогиба вала и разрушение вала.

При расчете вала необходимо не допускать наличия расчетных частот в пределах биения, то есть в пределах близких к резонансной частоте для недопущения разрушения вала. Запас может превышать критическую частоту на 20%. Такой запас, например, установлен для валов центробежных нефтяных насосов в ГОСТ 32601.

При сложении свободных и вынужденных колебаний получается результирующее колебание как результат наложения колебаний, колебание получается в форме биений:

Для описания положения мешалки используется обобщенная координата, то есть независимая величина, которая определяет изменение формы оси вала (положение системы).

Обобщенной силой является сила, которая полностью определяет действующую систему сил.

Обобщенная координата и сила связаны формулировкой: в результате произведения приращения обобщенной координаты на обобщенную силу получается работа.

Движение вала с мешалкой описывается уравнениями в обобщенных координатах. Между обобщенными координатами и декартовыми координатами всегда существует зависимость в виде функции декартовых координат от обобщенных координат.

Поделиться:
Популярные книги

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

Гримуар темного лорда V

Грехов Тимофей
5. Гримуар темного лорда
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда V

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Ведьмак. Назад в СССР

Подус Игорь
1. Ведьмак. Назад в СССР
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Ведьмак. Назад в СССР

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Я еще князь. Книга XX

Дрейк Сириус
20. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще князь. Книга XX

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы