Империя - I
Шрифт:
А через 100-150 лет уже профессиональные астрономы Кроуэлл и Кроммелин с удивлением обнаружили эту, лишь недавно изготовленную, рукотворную синусоиду и канонизировали ее, превратив в астрономический «закон природы». Который вскоре – уже в 1910 году – был безжалостно нарушен той же самой природой. А именно, комета Галлея пришла на 3,5 года раньше предсказанного «китайской синусоидой».
По-видимому, вся эта деятельность носила характер средневековой каббалы, когда многие ученые искали красивые, совершенные числовые соотношения в природе. Вспомним хотя бы рассуждения великого Кеплера о гармонии вселенной и т.п. В то время рассчитывали
В заключение, еще одно замечание о периоде в 77 лет для кометы Галлея. Если взять весь китайский список комет, а не только его часть после минус 100 года, – как мы делали выше, – то период кометы Галлея в 77 лет вообще ничем не выделяется на фоне других значений возможных периодов. Для его идеальной повторяемости не хватает двух точек, как и для многих других периодов.
5. 2. 6. О хаотичности движения кометы Галлея
В 1989 году в журнале «Astronomy and Astrophysics» появилась статья Б. В. Чирикова и В. В. Вячеславова [52], в которой показано, что в движении кометы Галлея присутствует значительная случайная составляющая. На эту работу обратили наше внимание профессор В. В. Козлов и профессор А. И. Нейштадт.
Главный вывод своего исследования авторы сформулировали так:
Показано, что движение кометы Галлея хаотично благодаря возмущениям, вызываемым Юпитером.[52], с.146.
Таким образом, модель движения кометы Галлея не является детерминированной, а строится в рамках динамического хаоса. Имеется в виду следующее. Если некоторая комета, такая как, например, комета Галлея, имеет сильно вытянутую орбиту, выходящую за круговую орбиту Юпитера, то каждый раз, возвращаясь назад в Солнечную систему, она встречает Юпитер в случайной фазе в силу несоизмеримости их периодов обращения. Юпитер, как огромная планета, дает наибольший вклад в возмущение траектории кометы. Встречая его в случайной фазе, комета подвергается случайному возмущению.
Оказывается для комет этого типа, описываемого математической моделью, разработанной в статье [52], характерна хаотичность динамики. Один из наиболее чувствительных параметров орбиты кометы является время прохождения через перигелий, то есть время возвращения (период) кометы. В частности, период кометы Галлея – случайная величина с экспоненциально нарастающим разбросом.
Но «идеальная Китайская Синусоида» в поведении периода кометы Галлея не могла появиться в результате случайного эксперимента.
Нам скажут: хотя и редко, но чудеса все-таки случаются.
Конечно, ответим мы.
Например, обезьяна, случайно тыкая в клавиши пишущей машинки, может напечатать, – причем без грамматических ошибок, – осмысленный текст. Например, роман. Но вероятность этого события ничтожно мала, хотя и не равна нулю. И вероятность появления «китайской синусоиды» в случайной серии экспериментов тоже ненулевая. Но она настолько исчезающе мала, что ею можно смело пренебречь точно так же, как и вероятностью того, что какая-нибудь обезьянка лихо напечатает без пропусков и ошибок четыре тома романа «Война и Мир».
5. 2. 7. Подозрительно
Здесь уместно сделать одно общее замечание о маловероятных событиях в истории. Как Н. А. Морозову, так и нам приходилось неоднократно слышать следующее возражение. Как один из примеров, процитируем наиболее квалифицированного оппонента – математика Б. А. Розенфельда, опубликовавшего статью «Математика в трудах Н. А. Морозова» [53], с.129…138. Комментируя обнаруженные Н. А. Морозовым странные и многочисленные совпадения в традиционной истории: совпадения потоков длительностей правлений в династиях разных эпох, совпадения астрономических событий и т.д., Б. А. Розенфельд писал:
«Морозов подсчитывал вероятность тех или иных совпадений, и, найдя что эта вероятность чрезвычайно мала, делал вывод о невозможности этих совпадений. Такого рода рассуждения совершенно неправомерны (? – авт.), так как теория вероятностей является наукой о массовых, а не о единичных явлениях, и фактически могут происходить события, вероятность которых сколь угодно близка к нулю» [53], с.137. Б. А. Розенфельд прав в своем последнем высказывании. События с очень малой вероятностью действительно происходят. Но если вы хотите, чтобы некое редкое событие произошло, нужно предъявить большое количество испытаний. А именно, – порядка величины, обратной значению вероятности. Поэтому важна не только вероятность события, но и количество испытаний, в которых оно происходит.
Для этого и существует наука – математическая статистика, которая все это учитывает. И рассуждения Морозова с точки зрения математической статистики вполне правомерны.
Для неспециалистов в теории вероятности, говоря на качественном уровне, отметим, что часто выдвигаемое нам возражение типа предыдущего, – «да, это событие маловероятно, но все-таки произошло в силу случайных причин», – не может выдвигаться слишком часто. Его можно высказать один раз, два раза, ну – три раза. По конкретному поводу. Но когда оно начинает выдвигаться очень часто и относится не к одному-двум, а к целому классу, серии поразительных совпадений в традиционной истории, то оно полностью теряет свой смысл. И в случае с кометой Галлея мы скорее всего услышим от некоторой части наших читателей то же возражение: «китайская синусоида появилась случайно». Мол, событие хоть и маловероятно, но вероятность его появления все-таки не равна нулю, а потому оно могло произойти».
Но это высказывание будет всего лишь очередным в длинной цепи подобных возражений. Не слишком ли часто в скалигеровской истории происходят события, вероятность которых практически равна нулю? Каждое такое возражение, взятое по отдельности, имеет смысл. Но когда они выстраиваются в длинный ряд, то эта последовательность возражений обессмысливается.
И еще раз подчеркнем следующее важное обстоятельство. Почему все эти «массовые серийные совпадения» в истории начинаются лишь ранее XIII века н.э.? Почему их нет в последние 600 лет? Что случилось с историей? Почему она вдруг только в последние 600 лет стала подчиняться законам теории вероятностей? А ранее этого времени якобы упорно игнорировала законы математической статистики?