Чтение онлайн

на главную - закладки

Жанры

Империя - II

Носовский Глеб Владимирович

Шрифт:

Таким образом, для всех списков Х с главами постоянного объема функция f1 одна и та же – это линейно убывающая в промежутке от 1 до N-1 функция.

Доказательство.

Поскольку случайная величина з определяется по номерам глав, содержащих выбранные имена, то можно считать, что выбираются не сами имена, а главы. Так как объем глав по предположению постоянен, то выбор любой главы на первом шаге осуществляется с одинаковой вероятностью равной 1/N. То же верно и для второго шага выбора.

Рассмотрим сначала случай 1 « x « N. В этом случае существует ровно N – x возможностей фиксировать главу с меньшим номером в паре глав, разнесенных на расстояние x в списке.

Вторая глава в этой паре имеет номер на x больший, чем первая и этим определяется (по первой) однозначно. Учитывая, что глава с меньшим номером может появиться как на первом, так и на втором шаге выбора, получаем, что общее количество возможностей выбрать пару глав, разнесенных на расстояние x (с учетом порядка выбора), равно 2(N – x). Вероятность выбрать наперед заданную пару глав с учетом порядка выбора равна 1/N^2. Следовательно, по формуле полной вероятности, Pз = x = 2(N-x^2)/N.

Пусть теперь x = 0. Тогда на обоих шагах выбора появляется одна и та же глава. Всего глав N и каждая из них может быть выбрана дважды подряд с вероятностью 1/N^2. Следовательно, Pз = 0 = 1/N. Лемма доказана.

2. 4. Нормировка списка имен

Как показывают расчеты для реальных хронологических списков, распределение з имеет вид (1) даже в том случае, когда объемы глав списка равны друг другу лишь приблизительно. Это означает, что распределение з устойчиво к вариациям в объемах глав. Однако бывают случаи, когда хронологический список имен разбит на главы разко различные по объему. В этом случае список необходимо нормировать, разделив кратности вхождения имен в каждую главу на объем этой главы (чтобы не рассматривать дробных кратностей можно предварительно умножить все кратности на произведение объемов всех глав).

После такой нормировки объемы глав станут одинаковыми. Поэтому мы без ограничения общности будем считать, что распределение вероятностей Pз = x является линейно убывающей функцией на множестве целых чисел от 1 до N (причем при x=N она равно нулю).

2. 5. Математическое описание списков имен с правильной хронологией

Исследуем структуру хронологического списка Х, сравнивая распределение з с распределениями з2 и з3. Естественные представления о том, как должен быть устроен правильный хронологический список имен приводят к следующему интуитивно очевидному утверждению:

(А) В случае правильной хронологии списка Х, условие и В = А и (или и : и), наложенное на пару имен списка, не должно влиять на глобальные особенности взаимного расположения всего множества таких же имен в списке Х.

Ясно, что утверждение (А) тесно связано с принципом затухания частот. В самом деле, оно означает, что локальные связи имен в списке не должны приводить к их глобальным связям.

Так будет, если в списке нет глобальных зависимостей, а локальные зависимости затухают. Но именно этого требует от правильных списков принцип затухания частот.

Утверждение (А) можно формализовать с помощью введенных выше случайных величин з2, з3 и з следующим образом.

(Б) Распределения случайных величин з2 и з3, построенные по списку с правильной хронологией,

в котором отсутствует зависимость между различными главами, должны совпадать с распределением з. Графики функций f2 и f3, построенные по такому списку, разбитому на главы одинакового объема, должны совпадать

на промежутке от 1 до N с графиком линейно убывающей функции. Если же между близкими главами списка есть взаимная зависимость, постепенно затухающая для все более отдаленных пар глав, то графики функций f2 и f3 должны совпадать с графиком линейно убывающей функции лишь на промежутке от е до N, где е – радиус затухания зависимости в списке.

Замечание. Строго говоря, это утверждение верно для бесконечных списков, так как некоторые расхождения между распределениями з2 и з3, з могут возникать из-за конечности длины списка Х. Поэтому методика применима лишь к спискам достаточно большого объема (не менее 150-200 имен).

Ясно, что утверждение (Б) является следствием утверждения (А).

В самом деле, значения Вз, большие, чем е, определяются лишь теми парами имен, которые разнесены в списке не менее, чем на е глав. Составы карт в главах, удаленных друг от друга не менее, чем на е номеров, по предположению, независимы друг от друга. Утверждение (А) означает, что такая зависимость не может возникнуть и в том случае, если мы ограничимся рассмотрением лишь локально связанных пар имен (сопряженных, ровесников).

Таким образом, из (А) следует, что это ограничение не влияет (в правильных списках) на вероятность появления того или иного значения расстояний между именами в выбранной паре имен, при условии, однако, что это расстояние не меньше, чем е. Другими словами, соответствующие условные распределения з совпадают с безусловными – что и утверждается в (Б).

Вывод

Итак, для правильных списков имен Х распределения случайных величин з2 и з3 должны совпадать на отрезке [е, N] с линейно убывающей функцией, равной нулю в точке x=N.

Предположим теперь, что список Х содержит дубликаты, сдвинутые друг относительно друга на расстояния Д,…, ДD глав (см. рис. 17). Покажем, что в этом случае распределение случайной величины з естественным образом зависит от событий типа А или В, введенных выше.

В самом деле, пусть ur, us – имена, сопряженные (встретившиеся) в некоторой главе Хi списка Х. Тогда с некоторой вероятностью (большей, чем в отсутствии этого условия) эти же имена будут встречаться и в главах-дубликатах главы Хi. Значит, разнесения пар имен, встретившихся в тех главах списка, которые имеют дубликаты в нем, с повышенной частотой будут принимать значения 0, Д1,…, ДD, равные расстояниям между дубликатами в списке Х.

Если в списке достаточно много дубликатов, то случайные величины з2 и з3 заметно изменят свое распределение по сравнению со случайной величиной з. Это произойдет из-за того, что их значения будут сгущаться около нуля (что соответствует повторной встрече имен, встретившихся в главе Хi, в дубликатах этой главы) и Д1,…, ДD (что соответствует ситуации, когда одно из имен, встретившихся в главе Хi, попало в один дубликат этой главы, а другое – в другой, отстоящий от первого на расстояние одного из сдвигов Д1,…, ДD). См. рис. 20.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Полковник Гуров. Компиляция (сборник)

Макеев Алексей Викторович
Полковник Гуров
Детективы:
криминальные детективы
шпионские детективы
полицейские детективы
боевики
крутой детектив
5.00
рейтинг книги
Полковник Гуров. Компиляция (сборник)

Черный дембель. Часть 1

Федин Андрей Анатольевич
1. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 1

Игра с огнем

Джейн Анна
2. Мой идеальный смерч
Любовные романы:
современные любовные романы
9.51
рейтинг книги
Игра с огнем

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

Глинглокский лев. (Трилогия)

Степной Аркадий
90. В одном томе
Фантастика:
фэнтези
9.18
рейтинг книги
Глинглокский лев. (Трилогия)

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Семь Нагибов на версту

Машуков Тимур
1. Семь, загибов на версту
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Семь Нагибов на версту