Чтение онлайн

на главную - закладки

Жанры

Империя - II

Носовский Глеб Владимирович

Шрифт:

4. 6. Метод гистограмм частот разнесения связанных имен.

Определяет величины сдвигов между дубликатами в хронологических списках

Здесь мы на модельном примере изложим идею и основные шаги методики. На формальном уровне она изложена в главе 2.

Обозначим буквой К большую перетасованную колоду карт, описанную выше. Наша задача – определить величины сдвигов между экземплярами малых исходных колод в к.

Пусть k1 k2 – некая пара последовательных карт в К (то есть k1 и k2 –

соседи). Предположим, что k1 и k2 – «истинные» соседи, то есть они были соседями также и в исходных малых колодах, до тасования. Тогда пары вида k1 k2, разбросанные по колоде К, будут отмечать в ней положения своих малых колод (откуда они пришли).

Сдедовательно, расстояния (разнесения) между такими парами будут равны сдвигам (разнесениям) между экземплярами малых колод в К. Это – идеальная ситуация. В реальности, конечно, по экземплярам одной только пары k1 k2 в колоде К судить о сдвигах между дубликатами (малыми колодами) в К нельзя, даже если сама пара k1 k2 – «истинная». В самом деле некоторые экземпляры этой пары могут случайным образом быть разбиты при тасовании и информация о соответствущем сдвиге в этом случае потеряется.

С другой стороны, среди экземпляров пары k1 k2 могут встретиться и «ложные», случайно возникшие при тасовании, и в этом случае мы зарегистрируем ложный сдвиг. Кроме того, мы заранее не знаем – «истиная» ли данная пара карт-соседей в К или нет.

Поэтому поступим следующим образом. Чтобы исключить потерю информации при случайном разбиении пар k1 k2 в ходе тасования, будем рассматривать карты k1 и k2 в колоде К по отдельности.

Итак, подсчитаем расстояния между всеми парами карт в К, при условии однако, что хотя бы в одном месте колоды К эти (такие же) карты все же стоят рядом (являются соседями). В чем смысл этого условия? Оно позволяет выделить такую совокупность пар карт, в которой «истинные» карты-соседи составляют заметную долю. В самом деле, пусть k1 k2 – «истинная» пара карт-соседей. Поскольку все исходные малые колоды были до тасования одинаковы, то эта пара существовала перед тасованием в N экземплярах (где N – число исходных малых колод).

Чтобы данная пара карт не попала в нашу совокупность, необходимо, чтобы все N экземпляров этой пары были разъединены при тасовании.

Вероятность этого события мала.

С другой стороны, для «ложной» пары карт-соседей условием попадания в указанную совокупность является случайная встреча этих карт при тасовании, что при неполном «блочном» тасовании также маловероятно.

Таким образом, большинство «истинных» пар карт-соседей попадут в нашу совокупность, а большинство «ложных» – не попадут в нее. В итоге, существенную часть этой совокупности составят «истинные» пары карт-соседей.

Рассмотрев все пары карт, которые где-либо в К оказались соседями, и вычислив для каждой такой пары значение разнесения (то есть количество карт, разделяющих эту пару в колоде К), мы получим набор целых чисел – значений разнесения между соседями в К.

По этому набору построим график – гистограмму частот разнесений карт-соседей

следующим образом. Отложим по горизонтальной оси все возможные значения разнесений между картами в колоде К (ясно, что разнесения не могут превосходить длины К), а по вертикальной оси – частоту, с которой данное значение встречается в наборе разнесений.

По такой гистограмме легко выделяются «необычно» частые значения разнесений: на местах таких значений гистограмма имеет ярко выраженный локальный максимум (всплеск). Например, если гистограмма частот разнесений карт-соседей имеет вид как на рис. 18, то существует два «необычно частых» значения разнесений: р1 и р2. Если «необычно» частых значений разнесения между картами-соседями в колоде К нет, то соответствующая гистограмма вообще не будет содержать всплесков (доказательство см. в главе 2). В этом случае следует предположить, что дубликатов описанного выше типа в колоде К нет.

В противном случае, дубликаты по-видимому имеется и их следует проанализировать. Сдвиги между дубликатами (исходными колодами) в этой структуре определяются как значения, на которых гистограмма делает всплески.

4. 7. Метод построения матриц связей.

Предназначен для поиска дубликатов в хронологических списках

Здесь мы на приведенном выше модельном примере изложим лишь общую идею методики. Метод был предложен авторами в [10], [12]. Подробно он изложена в главе 3.

Анализ дубликатов (исходных малых колод) в колоде К можно осуществить на основе следующих простых соображений.

Предположим, что имеющаяся в нашем распоряжении колода К была действительно получена описанным выше способом из нескольких экземпляров более короткой (исходной) колоды. Рассмотрим два отрезка А1 и А2 колоды К. Будем называть отрезки А1 и А2 дубликатами, если они соотвественно содержат карты, которые в экземплярах исходной колоды находились рядом (рис. 19).

Заметим, что при этом может случиться, что отрезки А1 и А2 вовсе не содержат одинаковых карт и тем не менее, являются дубликатами. Такая ситуация возникает, когда в отрезок А при тасовании попали одни карты из некоторого малого отрезка А исходной колоды, а в отрезок А – другие карты из того же «прообраза» А (рис. 19).

Подобная ситуация возникает и в реальных хронологических списках имен, когда в одном дубликате использованы одни имена, а в другом – другие имена одних и тех же людей.

Однако в любом случае, если А1 и А2 – действительно дубликаты, то есть содержат части, восходящие к общему прообразу А в исходной короткой колоде, то среди множества экземпляров их прообраза А, разбросанных при тасовании по колоде К и как-то искаженных при этом, должны встретиться и такие экземпляры, которые содержат как карты, попавшие из А1 в А2, так и карты, попавшие в А (на рис. 19 такой экземпляр А обведен кружком).

Следовательно, в том случае, когда А1 и А2 – дубликаты, вероятность встреч карт из А1 и А2 где-нибудь в колоде К, больше, чем аналогичная вероятность в случае, когда А1 и А2 дубликатами не являются (естественно, имеются в виду не сами экземпляры карт из А1 и А2, а такие же карты).

Поделиться:
Популярные книги

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Этот мир не выдержит меня. Том 4

Майнер Максим
Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Этот мир не выдержит меня. Том 4

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Двойник Короля

Скабер Артемий
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3

Все повести и рассказы Клиффорда Саймака в одной книге

Саймак Клиффорд Дональд
1. Собрание сочинений Клиффорда Саймака в двух томах
Фантастика:
фэнтези
научная фантастика
5.00
рейтинг книги
Все повести и рассказы Клиффорда Саймака в одной книге

Вторая мировая война

Бивор Энтони
Научно-образовательная:
история
военная история
6.67
рейтинг книги
Вторая мировая война

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!