Информация как основа жизни
Шрифт:
Логическая последовательность событий, приводящих от возникновения простейших потенциальных носителей информации к простейшим организмам – информационным системам 1-го рода, конечно, не зависит от того, какими конкретными путями осуществлялись те или иные ее этапы. Не имеет смысла также обсуждать вопрос, относящийся к моно- или полифилетическому происхождению организмов, – в действительности, по-видимому, реализовывались все логические возможности. Полезнее сосредоточить внимание на вычленении ключевых событий генезиса и эволюционирования феномена жизни и тех условий, которые определяли осуществление этих событий.
Сказанное выше позволяет сформулировать те требования к информации и кодируемым ею операторам, соблюдение которых является
Информация должна быть закодирована на носителе, допускающем возможность реализации двух ее ипостасей, т. е. возможность проявлять себя то в осуществлении гетерокатализа, то в осуществлении аутокатализа. В первом случае будет реализовываться присущая информации действенность, т. е. построение кодируемого ею оператора и управление его функционированием, а во втором – размножаемость. Пример такого носителя мы уже видели – это полимерные молекулы апериодического строения, такие, как молекулы РНК или ДНК ныне живущих организмов. Можно полагать, что в простейшем случае "тумблером", осуществляющим "переключение" функций информации с гетерокатализа на аутокатализ и обратно, может служить концентрация в окружающей среде определенных химических соединений: когда концентрация мономеров разных типов, составляющих молекулу-полимер, достигает критического значения (имитируя зону комфорта), "срабатывает" аутокатализ, число молекул-носителей начинает возрастать, а концентрация окружающих их мономеров -уменьшаться; это вызывает "включение" функции гетерокатализа, и молекулы-полимеры вновь начинают индуцировать в окружающей их среде синтез мономеров, и начинается новый цикл. Эта схема может служить ключевой к работе любой информационной системы. Другое дело, что, прежде чем информация получит возможность проявить себя как ауто- или гетерокатализатор, может потребоваться "перевод" ее на разные системы записи или же функции эти будут проявляться не непосредственно, а через посредство ряда промежуточных этапов, с участием многочисленных устройств-медиаторов (различных ферментов, например), – но суть дела от этого не изменится.
Функции гетерокатализа, таким образом, сводятся к тому, чтобы обеспечивать успешное выполнение аутокатализа. Специфика гетерокаталитическои функции и составляет семантику информации.
Здесь важно подчеркнуть еще одно, уже упоминавшееся, требование к генетической информации: изменение ее гетерокаталитическои функции не должно никак сказываться на свойстве осуществлять аутокатализ (при необходимых условиях, конечно). Это может реализовываться лишь в одном случае – когда та и другая функции осуществляются независимо друг от друга, совершенно разными механизмами, т. е. когда механизм аутокатализа не зависит от семантики информации, хотя именно семантика и определяет конкретные формы его "срабатывания". В случае, если для реализации информации и ее репликации используются ее копии на разных носителях, это требование выполняется автоматически. В случае же, когда используется единственная копия, выполнение этого требования обеспечивается разделением обеих функций во времени, т. е. цикличностью действия информационной системы.
Соответственно этому и операторы, обеспечивающие выполнение этих функций, могут иметь либо разные считывающие устройства, и тогда они способны функционировать одновременно, либо одно, общее, считывающее устройство, и тогда должны работать "посменно". При этом роль операторов, реализующих функцию гетерокатализа, состоит в обеспечении постоянства внутренней среды информационного объекта при максимальном разнообразии внешних условий; а роль операторов, реализующих функцию аутокатализа, состоит в обеспечении осуществления этого процесса при максимально стабильных состояниях внутренней среды. В случае живых организмов удовлетворение этим требованиям операторов реальных информационных систем проявляется в том, что при удивительном разнообразии их фенотипов и условий обитания те механизмы, которые осуществляют репликацию генетических структур и прежде всего удвоение ДНК, отличаются поразительной универсальностью. Практически это используется в генетической инженерии.
И, наконец, почти очевидное требование – требование полного взаимного соответствия информации и операторов, слагающих одну информационную систему. Это должно выражаться как в общности языка, на котором записана информация и на который "настроены" считывающие и реплицирующие устройства, так и в идентичности способов фиксации информации, поступающей на "вход"
Но сформулированные выше требования к информации и операторам – лишь необходимые, но еще не достаточные для того, чтобы слагаемая ими информационная система могла успешно функционировать. Для этого нужно, чтобы было выполнено еще одно требование – требование комплементарности информационной системы и тех условий, в которой ей надлежит обитать.
Взаимное соответствие информации и операторов, составляющих единую информационную систему, а также комплементарность этой системы и условий той внешней среды, где ей предстоит функционировать, можно назвать "принципом адекватности", несоблюдение которого чревато разрушением и гибелью информационных систем. Чем разнообразнее внешние условия, чем больше размерность пространства режимов таких систем, тем сложнее должны быть устроены их операторы и, следовательно, тем большее количество информации требуется для их кодирования. Конкретная специфика условий будет отражаться в семантике информации и структурных особенностях операторов. Степень адекватности информации, операторов, его кодируемых, и условий внешней среды будет выражаться в ценности данной информации при ее использовании в данной точке пространства режимов.
Рассмотрим теперь более внимательно отношения, которые могут складываться между информационной системой и внешней средой. Однако, прежде чем это сделать, необходимо дать достаточно строгие определения трем уже использовавшимся нами терминам – "пространство режимов", "среда обитания" и "экологическая ниша".
Пространство режимов – это, как мы уже отмечали (глава 2), математическое многомерное пространство, по каждой оси которого отложены нарастающие значения одного из факторов, "жизненно необходимых" для осуществления события цели. Размерность этого пространства, соответственно, равна числу таких факторов. На пространстве режимов может быть распределена вероятность р спонтанного осуществления Z, а также вероятность Р его осуществления при использовании данного оператора Q,. Поверхности, описывающие такие распределения, могут не перекрываться, а могут перекрываться частично или полностью, так что объем пространства режимов, содержащий его область, где р > О, может входить в область для Р > 0, а может занимать и совершенно обособленное положение, особенно если размерности пространства режимов для спонтанного и целенаправленного осуществления Z не одинаковы.
Размерность пространства режимов какого-либо оператора -очень важная характеристика этого оператора, отражающая число факторов, с которыми ему необходимо взаимодействовать при осуществлении данного целенаправленного действия. Объем области пространства режимов, где Р > 0, отражает то разнообразие комбинаций значений жизненно необходимых факторов, при которых событие Z может осуществляться. Это зона осуществления Z. В случае спонтанного осуществления Z та область зоны осуществления, где p1, и есть "зона комфорта".
Особое значение имеет область зоны осуществления Z, где р или Р, отнесенные к единице времени, превышают значения р' или Р', выражающие вероятность гибели в единицу времени объектов класса Z. Это – зона мультипликации (спонтанной или индуцированной) событий класса Z.
Среда обитания, в отличие от пространства режимов, – это реальная среда, содержащая жизненно необходимые факторы в соотношениях, соответствующих зоне осуществления Z. Кроме них, среда обитания может содержать еще ряд факторов, как безразличных для осуществления Z, так и препятствующих ему.
Экологическая ниша – это та область среды обитания, в которой соотношение всех жизненно необходимых факторов соответствует зоне мультипликации Z, а давление помех не настолько выражено, чтобы существенно ее деформировать.
Таким образом, как зоны обитания, так и экологические ниши – это реальные участки пространства, разбросанные по нашей планете, причем одинаковые зоны обитания или экологические ниши идентичны только в отношении сочетаний жизненно необходимых факторов, но могут существенно различаться по факторам, безразличным или выступающим в роли помех. Число факторов, входящих в реальные зоны обитания или экологические ниши, может быть самым разным, равным или превышающим размерность пространства режимов, которая, таким образом, ограничивает его снизу. Поэтому один и тот же участок реального пространства может включать в себя несколько разных зон обитания и экологических ниш.