Чтение онлайн

на главную - закладки

Жанры

Институциональная экономика

Аузан Александр Александрович

Шрифт:

Стоит заметить, что вообще говоря, термин «военные усилия» условен. Этот показатель может быть применен, например, к ситуации соперничества политических партий за власть в современной демократической стране. Поэтому и действие «параметра решительности» отнюдь не ограничивается ситуацией вооруженного противоборства двух индивидов или групп. Так, например, в современных демократиях такие институты, как права человека и разделение властей сокращают этот параметр.

Рисунок 5.1. Функция успеха в соперничестве9*

1 0,9-

+ F2 = 25

0,7-

0.6-

m = 0,5

05-

I

0.4-

f

m = 1

0.3-

,-\

0,2-

0.1-

25 3C 35 40 46

98 Hirshleifer, Jack (1995), Anarchy and its Breakdown, 103 Journal of Political Economy, 32.

Из

предшествующих выкладок получаем:

(f2R2)m

И, наконец, приходим к условиям равновесия между выбираемыми сторонами уровнями интенсивности военных усилий и долями ресурсов, которые контролирует каждая из сторон:

гт п

I

— J2 К2

[

h)

Из последнего уравнения следует, что при стремлении m к единице, pi/p2 —> 0, если fi > f2, и pi/p2—> оо, если fi< f2 (см. рис. 5.2).

На этом рисунке по горизонтальной оси отложена относительная интенсивность военных усилий (fi/f2), а по вертикальной — пропорция успеха (pi/p2).

Из всего предшествующего изложения вытекает первое условие, при соблюдении которого анархическая система будет относительно устойчивой, а именно, для динамической стабильности системы необходимо, чтобы «параметр решительности» был меньше 1. Проиллюстрируем это числовым примером. Положим R = 100, f\ = 0,1, f2 = 0,2, m = 2/3. Тогда:

/(l-m)

.99

Ri = 20, R2 = 80. Рисунок 5.2. Интенсивность военных усилий и пропорция успеха

m = 0.75

m = 0.9

в

7 6–5 4

1-

0–2 0.4 0.6 0.6

1.2 1.4 1.6 1.8

Если первоначальное распределение ресурсов иное, то каждое последующее взаимодействие между противоборствующими сторонами будет асимптотически приближать распределение ресурсов к равновесному уровню. Например, в рассмотренном примере, при сохранении всех остальных параметров, если первоначально ресурсы распределены в пропорции 3/2 (Ri° = 60, R2 = 40),

то конфликтное взаимодействие между сторонами в первом периоде приведет к

Ibid., 34.

новому распределению ресурсов: R/ = 45,2, R2' = 54,8. Продолжение конфликта во втором периоде установит новые параметры распределения ресурсов: R]2 = 35,7, R22 = 64,3. И так далее.

Если же параметр m > 1, например, m = 2, распределение ресурсов не будет стремиться к равновесному состоянию. Так, в рассматриваемом примере, при Ri° = 60, R20 = 40 и m = 2, Ri1 = 36, R21 = 64; Ri2 = 7,3, R22 = 92,7, и так далее. То есть, система удаляется от равновесия с каждым следующим взаимодействием.

Другим необходимым условием стабильности анархической системы будет, естественно, наличие у каждой из соперничающих сторон в динамическом равновесии по меньшей мере минимального уровня доходов, у, обеспечивающего выживание каждого из конкурентов (Yj > у, i=l,2).

Заметим также, что эти два условия являются не достаточными, но только необходимыми условиями устойчивости анархической системы.

Далее, предположим, что каждая из конкурирующих сторон пытается максимизировать свой собственный доход, выбирая оптимальную интенсивность своих военных усилий и полагая заданной интенсивность усилий конкурента. Очевидно, что в этом случае мы имеем дело с классической дуополией Курно. Целевые функции соперничающих индивидов или групп будут выглядеть как:

fl\Ji +/2

Где i = 1,2; aiei + Ъ& = 1; М = m/(l-m).

Решая это уравнение для каждого из соперников, получаем соответствующие кривые реакции (RQ и RC2):

f" — м

/7 м

Если же принять достаточно реалистичную для условий анархии предпосылку, что и производственные и военные технологии обоих субъектов одинаково эффективны, мы получим условие равновесия при симметричном двустороннем конфликте:

Мт

Как показывает это уравнение, интенсивность военных усилий сторон при симметричном конфликте обратно пропорциональна издержкам конверсии единицы ресурсов в военные усилия, и прямо пропорциональна «параметру решительности», отражающему эффективность наступательных военных усилий, относительно эффективности оборонительных усилий.

Симметричное решение при b = 1 отражено на рис. 5.3.

Здесь по горизонтальной оси отложена интенсивность военных усилий первого индивида или группы, а по вертикальной — второго индивида или группы. Как видно на этом графике, равновесный объем военных усилий увеличивается с ростом т.

Так как, при симметричном конфликте pi = р2 = 1/2, максимальный для каждой из сторон доход будет представлен следующим уравнением:

Иначе говоря, доход каждой из сторон растет с увеличением совокупного объема доступных ресурсов R и ростом параметра производительности h; и падает с ростом «параметра решительности» m и издержек конверсии единицы ресурсов в производственные усилия а.

Следующим шагом будет увеличение числа индивидов или групп, действующих в анархической системе до N. В этом случае целевая функция первого из этих конкурентов будет выглядеть как:

Поделиться:
Популярные книги

Английский язык с У. С. Моэмом. Театр

Франк Илья
Научно-образовательная:
языкознание
5.00
рейтинг книги
Английский язык с У. С. Моэмом. Театр

Совершенный: Призрак

Vector
2. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: Призрак

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Измена. Право на обман

Арская Арина
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на обман

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

Чернышевский Николай Гаврилович
Чернышевский, Николай Гаврилович. Полное собрание сочинений в 15 томах
Проза:
русская классическая проза
5.00
рейтинг книги
Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

Луна как жерло пушки. Роман и повести

Шляху Самсон Григорьевич
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
Луна как жерло пушки. Роман и повести