Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №1
Шрифт:

В нашем случае

Поэтому

И в самом деле: 27•3–8•10 = 81–80 = 1, поэтому берем x0 = 3, у0 = 10. Значит частным решением уравнения аx1by1 = с будет х1 =3•2, y1 = 10•2.

Что касается однородного уравнения ах — by = 0, то очевидным семейством решений его будет

х = b•k, у = a•k, k — произвольное целое число. То, что это общее решение однородного уравнения следует из того, что данное уравнение эквивалентно сравнению ах = (mod b) и в силу взаимной простоты а и b это сравнение можно поделить на а (см. [3]), после чего сравнение превращается в х = (mod b), т. е. х должно делиться на Ь.

В итоге, получаем решение

уравнения (1). Поэтому в исходных переменных получаем:

Если здесь положить k = —1, то получаем дираковское решение: n0 = n3 = —2. Однако видно, что оно вовсе не наименьшее, и существует множество других, еще меньше. Впрочем, в каком-то смысле дираковский ответ действительно наименьший из возможных: именно, если искать наименьшее по абсолютной величине возможное количество рыб, то таким в самом деле окажется (-2).

Список литературы

[1] Энциклопедия элементарной математики. Государственное изд-во технико-теоретической лит-ры. М.-Л., 1951, стр. 285.

[2] Энциклопедия элементарной математики. Государственное изд-во технико-теоретической лит-ры. М.-Л., 1951, стр. 303.

[3] Энциклопедия элементарной математики. Государственное изд-во технико-теоретической лит-ры. М.-Л., 1951, стр. 275–276.

Рассмотрим вопрос о количестве решений уравнения

ax = logax (1)

на полуоси х > 0 при 0 < a < 1. Именно, нас интересует вопрос о том, при каких a количество решений равно трем.

Если ?(х) = ах, то loga х = ?– 1(х), и наше уравнение (1) принимает вид ?(х) = v– 1(х), что равносильно ?(?(х)) = x или

(2)

Для удобства дальнейшего введем новую переменную t = х•In а и функцию

Тогда

(3)

и уравнение (2) превращается в

(4)

Найдем количество решений данного уравнения. Для этого прежде всего исследуем функцию F(t).

Поскольку исходная функция ?(х) определена на интервале х > 0 и 0 < а < 1, то In а < 0 и t = х In а < 0, т. е. функция F(t) определена на интервале t € (—оо,0).

Асимптотики в предельных точках: limt->-ooF(t) = 0–0, limt->0–0F(t) = —oo. Т. е. функция F имеет горизонтальную и вертикальную асимптоты.

Далее,

Рис. 1: График функции F(t)

Для

нахождения экстремумов функции F рассмотрим функцию ?(t) = tet и найдем корни уравнения ?(t) = 1/ln a. Видно, что на интервале t € (—оо,0) имеют место соотношения: limt->oo ?(t) = 0–0, ?(0) = 0. Далее, ?'(t) = et(t + 1), ?"(t) = et(t + 2) и вообще ?(n)(t) = et(t + n). Поэтому minimum функции ? находится в точке tmin — 1 и равен ?min = — e– 1

Рис. 2: График функции ?(t) и определение положения точек t1, и t2.

Значит:

1) При 1/ln a <= — e– 1 <=> a >= e– e экстремумов у функции F нет.

2) При а < е– e функция F имеет один minimum в точке t1, равный Fmin = aet1/t1 и один maximum в точке t2 > t1, равный Fmax = aet2/t2; при этом t1 < = tmin= -1 и t2 > tmin = -1.

Таким образом уравнение (4) имеет три решения только в случае 2) и лишь в том случае если

Fmin > 1/ln a < Fmax. (5)

При этом в случае 2) условие (5) является не только необходимым, но и достаточным для наличия у уравнения (4) трех решений. Точки t1 и t2 определяются условиями ?(t1) = t1et1 = ?(t2) = t2et2 = 1/ln a. Т. е. необходимое и достаточное условие наличия трех решений принимает вид

Левые части уравнений в условиях (6) не зависят от а, и потому эти уравнения имеют вид f(t) = g(a), в то время как неравенства (6) данным свойством не обладают (обе их части зависят от а), что неудобно. Выразим из первого уравнения et1= 1/t1lna и подставим это в соответствующее неравенство. Тогда получим

Аналогично, Fmax = e1/t2/t2. Тогда условия (6) превращаются в

Вспоминая определение функции ?, перепишем условия в форме:

Данные условия удобны тем, что левые части их не зависят уже от а (т. к. функция ? не зависит от а) и имеют вид f(t) = g(а) (т. е. переменные t и а разделены).

Рис. 3: Графики функций ?(t) (красный) и ?(1/t) (синий) и определение точек t1 и t2 (зеленая прямая — на уровне 1/ln a).

Поделиться:
Популярные книги

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Имперский Курьер. Том 4

Бо Вова
4. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 4

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Совершенный 2.0: Возрождение

Vector
5. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный 2.0: Возрождение

Смертельно влюблён

Громова Лиза
Любовные романы:
современные любовные романы
4.67
рейтинг книги
Смертельно влюблён

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

Цикл "Отмороженный". Компиляция. Книги 1-14

Гарцевич Евгений Александрович
Отмороженный
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Цикл Отмороженный. Компиляция. Книги 1-14

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Совершенный: охота

Vector
3. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: охота

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14