Интернет-журнал "Домашняя лаборатория", 2007 №1
Шрифт:
В нашем случае
Поэтому
И в самом деле: 27•3–8•10 = 81–80 = 1, поэтому берем x0 = 3, у0 = 10. Значит частным решением уравнения аx1 — by1 = с будет х1 =3•2, y1 = 10•2.
Что касается однородного уравнения ах — by = 0, то очевидным семейством решений его будет
В итоге, получаем решение
уравнения (1). Поэтому в исходных переменных получаем:
Если здесь положить k = —1, то получаем дираковское решение: n0 = n3 = —2. Однако видно, что оно вовсе не наименьшее, и существует множество других, еще меньше. Впрочем, в каком-то смысле дираковский ответ действительно наименьший из возможных: именно, если искать наименьшее по абсолютной величине возможное количество рыб, то таким в самом деле окажется (-2).
Список литературы
[1] Энциклопедия элементарной математики. Государственное изд-во технико-теоретической лит-ры. М.-Л., 1951, стр. 285.
[2] Энциклопедия элементарной математики. Государственное изд-во технико-теоретической лит-ры. М.-Л., 1951, стр. 303.
[3] Энциклопедия элементарной математики. Государственное изд-во технико-теоретической лит-ры. М.-Л., 1951, стр. 275–276.
Рассмотрим вопрос о количестве решений уравнения
ax = logax (1)
на полуоси х > 0 при 0 < a < 1. Именно, нас интересует вопрос о том, при каких a количество решений равно трем.
Если ?(х) = ах, то loga х = ?– 1(х), и наше уравнение (1) принимает вид ?(х) = v– 1(х), что равносильно ?(?(х)) = x или
(2)
Для удобства дальнейшего введем новую переменную t = х•In а и функцию
Тогда
(3)
и уравнение (2) превращается в
(4)
Найдем количество решений данного уравнения. Для этого прежде всего исследуем функцию F(t).
Поскольку исходная функция ?(х) определена на интервале х > 0 и 0 < а < 1, то In а < 0 и t = х In а < 0, т. е. функция F(t) определена на интервале t € (—оо,0).
Асимптотики в предельных точках: limt->-ooF(t) = 0–0, limt->0–0F(t) = —oo. Т. е. функция F имеет горизонтальную и вертикальную асимптоты.
Далее,
Рис. 1: График функции F(t)
Для
Рис. 2: График функции ?(t) и определение положения точек t1, и t2.
Значит:
1) При 1/ln a <= — e– 1 <=> a >= e– e экстремумов у функции F нет.
2) При а < е– e функция F имеет один minimum в точке t1, равный Fmin = aet1/t1 и один maximum в точке t2 > t1, равный Fmax = aet2/t2; при этом t1 < = tmin= -1 и t2 > tmin = -1.
Таким образом уравнение (4) имеет три решения только в случае 2) и лишь в том случае если
Fmin > 1/ln a < Fmax. (5)
При этом в случае 2) условие (5) является не только необходимым, но и достаточным для наличия у уравнения (4) трех решений. Точки t1 и t2 определяются условиями ?(t1) = t1et1 = ?(t2) = t2et2 = 1/ln a. Т. е. необходимое и достаточное условие наличия трех решений принимает вид
Левые части уравнений в условиях (6) не зависят от а, и потому эти уравнения имеют вид f(t) = g(a), в то время как неравенства (6) данным свойством не обладают (обе их части зависят от а), что неудобно. Выразим из первого уравнения et1= 1/t1lna и подставим это в соответствующее неравенство. Тогда получим
Аналогично, Fmax = e1/t2/t2. Тогда условия (6) превращаются в
Вспоминая определение функции ?, перепишем условия в форме:
Данные условия удобны тем, что левые части их не зависят уже от а (т. к. функция ? не зависит от а) и имеют вид f(t) = g(а) (т. е. переменные t и а разделены).
Рис. 3: Графики функций ?(t) (красный) и ?(1/t) (синий) и определение точек t1 и t2 (зеленая прямая — на уровне 1/ln a).
Неудержимый. Книга VIII
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Законы Рода. Том 6
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
рейтинг книги
Восход. Солнцев. Книга I
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Попаданка
Любовные романы:
любовно-фантастические романы
рейтинг книги
Возлюби болезнь свою
Научно-образовательная:
психология
рейтинг книги
