Интернет-журнал "Домашняя лаборатория", 2007 №8
Шрифт:
Мультипроцессорные системы обычно используют один или сразу два метода связи между процессорными узлами в системе. Один метод предполагает использование канала связи, работающего по принципу "точка-точка". Такой метод многопроцессорной обработки данных называется потоковым (data-flow multiprocessing). При использовании другого метода процессорные узлы связываются через единую глобальную память посредством общей параллельной шины. Семейство процессоров SHARC поддерживает реализацию связи между процессорами по принципу "точка-точка" через шесть имеющихся портов связи. Процессоры SHARC поддерживают также усовершенствованный способ организации многопроцессорных систем, называемых кластерами, с общей параллельной
Для приложений, где требуется большая вычислительная мощность, а гибкость вычислительной системы не является основным параметром, потоковая обработка данных является наилучшим решением. Выполнение DSP алгоритма разделяется между несколькими процессорами, и данные проходят через них, как показано на рис 7.38 справа. Процессор SHARC идеально подходит для применения в таких приложениях, где требуется потоковая обработка данных, так как он не требует наличия межпроцессорного регистрового файла типа FIFO (первый вошел — первый вышел) или внешней памяти. Каждый SHARC имеет 6 портов связи, позволяющих создавать двумерные и трехмерные многопроцессорные массивы или организовывать традиционные системы потоковой обработки данных. Внутренняя память SHARC обычно достаточно велика, чтобы разместить в ней код и данные большинства приложений, использующих описанную топологию. Все, что требуется для такой системы — это несколько процессоров SHARC и набор необходимых соединений между ними.
СРАВНЕНИЕ СОЕДИНЕНИЙ ЧЕРЕЗ ВНЕШНИЕ ПОРТЫ (ЕР) И ПОРТЫ СВЯЗИ
• Преимущества, которые дают внешние порты (ЕР)
? Взаимодействие двух процессоров SHARC через порт ЕР обеспечивает наибольшую пропускную способность (400 МБайт/с)
? Возможно подключение до шести процессоров SHARC и хост-процессора
? ЕР обеспечивает гибкость при обмене данными и управлении
? Наличие общей памяти упрощает структуру программы
• Преимущества, которые дает использование портов связи
? Каждый порт связи обеспечивает независимое взаимодействие двух процессоров SHARC на скорости 100 Мбайт/с
? Имеется до шести портов связи (600 Мбайт/с)
? Возможность построения системы с любым числом процессоров SHARC
• Связи через соединительный порт и ЕР можно использовать одновременно
Рис. 7.39
Кластерная мультипроцессорная система лучше всего подходит для применении в приложениях, где требуется высокая степень гибкости. Особенно хорошо она подходит для систем, которые должны выполнять различные задачи, некоторые из которых запускаются одновременно. Процессоры SHARC имеют встроенный хост-интерфейс, который позволяет легко организовать взаимодействие кластера с хост-процессором или с другим кластером.
Мультипроцессорная кластерная система строится на основе нескольких процессоров SHARC, связанных между собой по параллельной шине, что позволяет процессорам осуществлять доступ во внутреннюю память друг друга, а общей глобальной памяти. Типичный кластер на основе процессоров SHARC может включать до 6 процессоров ADSP-21160 и хост процессор, который может осуществлять шинный арбитраж. Встроенная логика арбитража шины позволяет процессорам SHARC разделять общую шину. Другие встроенные возможности процессоров SHARC помогают избежать необходимости использования любых других вспомогательных аппаратных средств при организации кластерной многопроцессорной системы. Очень часто в таких системах полностью отсутствует необходимость в локальной дополнительной или глобальной внешней памяти.
ADSP-TS001 — TigerSHARC™: статический суперскалярный цифровой сигнальный процессор
Цифровой Сигнальный Процессор ADSP-TS001 — TigerSHARC™ является первым DSP компании Analog Devices, построенным по новой статической суперскалярной архитектуре. Процессор TigerSHARC™ создан для применения в оборудовании телекоммуникационной инфраструктуры и предлагает новый высочайший уровень интеграции и уникальную возможность обрабатывать 8-, 16-, 32-разрядные типы данных с фиксированной и плавающей
В оборудовании телекоммуникационной инфраструктуры протоколы вокодера и канального кодера разработаны для 16-разрядного типа данных. Для улучшения качества сигнала многие телекоммуникационные приложения используют линейную коррекцию и технологию подавления эхо-сигналов, что существенно улучшает качество сигнала и характеристики системы. Эти алгоритмы выигрывают, благодаря увеличению точности обработки при применении 32-разрядных данных и данных с плавающей точкой. Поддержка 8-ми разрядного формата данных удобна при реализации часто используемого алгоритма декодера Витерби и при обработке изображений, где RGB сигналы, представляющие основные цвета, принято представлять 8-разрядными данными. Многие из этих приложений требуют высокого уровня производительности и могут предполагать использование алгоритмов, работающих последовательно или даже одновременно.
Точные требования определяются конкретными приложениями. Гибкость архитектуры процессора TigerSHARC позволяет разработчикам программного обеспечения выполнять требования по точности, необходимые в том или ином приложении, без каких-либо потерь эффективности работы системы в целом. При использовании процессоров TigerSHARC производительность системы определяется применяемым форматом данных.
Архитектура процессоров TigerSHARC охватывает ключевые элементы целого ряда различных видов микропроцессоров. Это RISC (Reduced Instruction Set Computer), VLIW (Very Long Instruction Word) и DSP для получения наиболее эффективного цифрового сигнального процессора. Новая архитектура поддерживает на высоком уровне такие параметры, присущие DSP процессорам, как короткий машинный цикл с детерминированной длительностью, быстрая реакция на прерывания и отличный интерфейс с периферийными устройствами для поддержки высокой производительности вычислений и высокой скорости ввода и вывода данных. Чтобы достичь наиболее высоких результатов в работе ядра процессора, предусмотрены такие свойства RISC-архитектуры, как операции одновременной загрузки и сохранения данных, устройство управления выполнением команд с глубоким конвейером и предсказанием переходов, большой регистровый файл для передачи данных между вычислительными блоками. Кроме того, использование особенностей архитектуры VLIW позволяет более эффективно использовать программную память, особенно при реализации алгоритмов, характерных для задач управления.
ОСНОВНЫЕ ОСОБЕННОСТИ АРХИТЕКТУРЫ ПРОЦЕССОРА TigerSHARC®
Ядро
1200 ММАС/с на частоте 150 МГц-16 бит с фиксированной точкой
300 ММАС/с на частоте 150 МГц — 32 бита с плавающей точкой
900 MFLOPS — 32 бита с плавающей точкой
Память
6 Мбит встроенной SRAM, организованные как единая память в отличие от традиционной Гарвардской архитектуры
Средства ввода-вывода, периферийные устройства и корпус
Скорость передачи данных через внешнюю шину 600 Мбайт/с
Суммарная скорость передачи данных через 4 порта связи 600 Мбайт/с
Поддержка многопроцессорной кластерной системы до
8 процессоров ADSP-TS001 без дополнительных микросхем
4 порта ввода/вывода общего применения
Контроллер динамической памяти SDRAM
Рис. 7.41
Чтобы обеспечить все функциональные блоки командами, необходимо эффективно использовать доступную ширину слова команды. Иначе говоря, многофункциональные команды должны подаваться на вычислительные блоки одновременно и параллелизм выполнения операций должен планироваться заранее, до непосредственного выполнения программы.