Искусственный интеллект. Что стоит знать о наступающей эпохе разумных машин
Шрифт:
Кришна Палем, ученый из Университета Райса в Хьюстоне (штат Техас), является одним из немногих исследователей, которые создают энергосберегающие «мозгоподобные» компьютеры. Его устройства не удостоятся наград за точность – большинство приборов не смогут даже правильно сосчитать сумму элементов. Для них 2 + 2 может с легкостью оказаться 5. Но не позволяйте запутать себя погрешностью в вычислениях. Палем создает машины, которые смогут стать новым рассветом для компьютерных вычислений.
Неточность слабо ассоциируется с компьютерами. С тех пор, как в 1930-х годах Тьюринг установил
Но, возможно, нам следует разрешить компьютерам ошибаться. Это может оказаться лучшим способом для раскрытия новой волны умных устройств и вывести из тупика высокопроизводительные вычисления. Так мы сможем выполнять сложное моделирование, выходящее за рамки возможностей современных суперкомпьютеров, – модели, которые лучше предсказывают изменение климата, помогают проектировать эффективные автомобили и самолеты, а также раскрывают тайны образования галактик. Такие модели смогут даже раскрыть самую главную загадку всего сущего. Для этого им нужно позволить нам смоделировать человеческий мозг.
До сих пор нам приходилось соглашаться на компромисс между производительностью и энергоэффективностью: компьютер может быть либо быстрым, либо маломощным, но не все сразу. Это означает не только потребность более мощных смартфонов в улучшенных батареях, но и то, что суперкомпьютеры сами станут источником энергии. Экзафлопс-машинам следующего поколения, способным выполнять 1018 операций в секунду, нужно будет потреблять до 100 МВт – это мощность небольшой электростанции. Итак, гонка компьютеров по достижению большего с меньшими затратами началась.
Один из способов – сократить время, которое компьютер тратит на выполнение кода. Чем меньше времени затрачено, тем меньше энергии потреблено. Программистам нужно найти способ получения желаемых результатов быстрее. Возьмем классическую задачу коммивояжера: найти кратчайший маршрут, проходящий через несколько городов. Известно, что решить данную задачу довольно трудно, учитывая тот факт, что количество маршрутов при увеличении количества городов возрастает в геометрической прогрессии. Палем утверждает, что зачастую программисты довольствуются маршрутом, который и наполовину не дотягивает до «лучшего», поскольку дальнейшее улучшение маршрута отнимает слишком много компьютерного времени. В последней версии этого метода предлагается с помощью машинного обучения получать приблизительный результат выполнения отдельных кусков кода. Тогда в процессе работы с программой этот результат будет использоваться каждый раз вместо фактического выполнения исходного фрагмента кода.
Но экономия энергии за счет урезания приложений совсем незначительна. Для настоящей экономии энергии потребуется изменить принципы работы оборудования. Компьютеры могут сэкономить огромное количество энергии, просто перестав эксплуатировать свои транзисторы на полную мощность. Однако в данном случае придется пожертвовать точностью. Команда Палема пытается создать компьютеры, которые смогут ошибаться в расчетах в допустимых пределах. Возьмите любой кажущийся вам хорошим алгоритм, и он решит ту же задачу иначе, поскольку обладает другой физической системой под капотом.
Стандартные
В 2003 году Палем, перешедший в Технологический институт Джорджии в Атланте, понял, что грядут неприятности. Стало ясно, что способность электронной промышленности к удвоению количества транзисторов в микросхеме каждые 18–24 месяцев (тенденция к миниатюризации, известная как закон Мура) подходит к концу.
Миниатюризация приводила к ошибкам на уровне микросхем. Во многом это было связано с перегревом, радио- или перекрестными помехами между микросхемами с плотной компоновкой. Теперь на первый план вышла проблема потребления энергии. Что если бы можно было приспособить такую нестабильность системы для экономии энергии?
Ответ Палема заключался в попытке разработать вероятностную версию КМОП-структуры с намеренной нестабильностью. Команда Палема создала цифровые схемы, в которых старшие разряды, представляющие собой точные значения, получали пятивольтовое питание. Младшие разряды подпитывались от 1 вольта. Таким образом можно было исказить до половины битов, представляющих число.
Получалось, что разработанная Палемом версия сумматора – общей логической схемы, складывающей два числа, – не работала с обычной точностью. «Когда сумматор складывает два числа, он дает достаточно правильный, но не точный ответ, – говорит он. – Но с точки зрения использования энергии это – наиболее дешевое решение».
Переложите эту модель на миллиарды транзисторов, и вы получите существенную экономию энергии. Хитрость заключается в том, чтобы выбрать приложения, для которых не особо важны младшие разряды. Например, цвет пикселя представляется большим диапазоном чисел. В одном эксперименте Палем с коллегами создали цифровой видеодекодер, который при преобразовании пиксельных данных в экранные цвета неточно интерпретировал младшие разряды.
Они обнаружили, что зрители заметили лишь небольшое ухудшение качества изображения. «Человеческий глаз многое усредняет, – поясняет Палем. – Подумайте о том, как мы воспринимаем иллюзии. Мозг выполняет колоссальную работу по достраиванию изображения».
Воодушевленные этим успехом, исследователи из Университета Райса переключились на другую сферу применения, затрагивающую органы чувств, – слуховые аппараты. Первые тесты показали, что неточная цифровая обработка в слуховом аппарате может вдвое снизить энергопотребление, но приводит к снижению разборчивости лишь на 5 %. Результаты показывают, что эти методы подходят для снижения энергопотребления смартфонов и персональных компьютеров, поскольку они представляют собой аудиовизуальные устройства. Многие сферы применения ИИ (например, распознавание изображений и переводы) также выиграют от использования данных методов.