Искусственный интеллект. Что стоит знать о наступающей эпохе разумных машин
Шрифт:
Основанный на больших данных, ИИ учится на этой инфраструктуре и питает ее – крайне сложно представить одно без другого. Равно как и сложно представить свою жизнь без всего этого.
Сможет ли созданное человеком существо когда-нибудь удивить своего создателя и проявить собственную инициативу? Люди задавались этим вопросом на протяжении нескольких веков, начиная с голема из еврейского фольклора и заканчивая Франкенштейном или «Я, Робот». Ответы давались совершенно разные, но как минимум основоположник компьютерных вычислений знал истину.
– Аналитическая машина не претендует на то, чтобы создавать нечто по-настоящему новое, – говорила Ада Лавлейс, соратница Чарльза Бэббиджа, еще в 1843 году, тем самым устраняя
И все же 173 года спустя компьютерная программа, написанная в миле от ее дома в Лондоне, обыграла мастера игры в го. Ни один из программистов AlphaGo не мог приблизиться к победе над столь сильным соперником, кроме созданной ими же программы. Примечательно то, что программисты не разбирались в стратегии игры. Машина сама научилась делать то, чего не знали и не понимали ее создатели. AlphaGo – это не исключение, а скорее, новый стандарт.
Десятилетия назад инженеры уже пытались создавать машины, способные к обучению на опыте. Теперь же опыт стал ключом к современному ИИ. Сами того не понимая, мы пользуемся этими машинами каждый день. Для программистов, создающих такие машины, задача заключалась в том, чтобы заставить их на предельно высоком уровне научиться чему-то, что мы не знаем или не понимаем, а не программировать подобное «знание» напрямую.
По мере вашего взросления велосипед так и не научился самостоятельно приезжать домой. Пишущие машинки так и не научились предлагать подходящее слово или находить орфографические ошибки. Механическое поведение стало синонимом фиксированности, предсказуемости и неизменности. Долгое время само словосочетание «самообучающаяся машина» было противоречием, и все же сегодня мы с радостью говорим о гибких, адаптивных и даже любознательных машинах. В области искусственного интеллекта считается, что машина учится, если она совершенствует свое поведение по мере получения нового опыта. Чтобы лучше понять, как именно машины могут выполнять подобные действия, обратите внимание на функцию автозаполнения в вашем смартфоне.
Если активировать данную функцию, то программа начнет предлагать возможные варианты для завершения набираемого вами слова. Но как система понимает, что именно вы хотите напечатать? Ведь программист не разрабатывал модель под ваши нужды и не придумывал сложные грамматические правила языка. Получается, что алгоритм предлагает слово, которое с наибольшей вероятностью будет использовано следующим.
Программа «узнает» это из статистического анализа огромного объема существующего текста. Данный анализ в основном проводится при создании функции автозаполнения, в то же время вы можете дополнить систему собственными данными. Программа в буквальном смысле изучает ваш стиль.
Один и тот же базовый алгоритм может работать с разными языками, адаптироваться к разным пользователям и добавлять в себя слова и фразы, которые никогда раньше не видел, такие как ваше имя или название улицы. Качество предложений главным образом зависит от качества и количества данных, на которых обучалась система.
Чем больше вы в ней работаете, тем больше она узнает об используемых вами словах и выражениях. Система совершенствует свое поведение на основе опыта, что и является определением обучения. Такую систему придется «познакомить» с сотнями миллионов фраз, то есть натренировать ее на нескольких миллионах документов. Это трудно для человека, однако совершенно несложно для современного оборудования.
Боты в переводе
Алгоритмы, лежащие в основе машинного обучения, существуют уже много лет. Новизна заключается в том, что теперь у нас достаточно данных и вычислительной мощности для развития
Возьмем для примера языковой перевод. На этапе зарождения ИИ лингвисты создавали системы перевода на основе двуязычных словарей и систематизированных в коде правил грамматики. Но такие системы не оправдали себя, потому как закодированные правила не были адаптивными. Например, во французском языке прилагательное идет после существительного, а в английском – перед существительным, кроме ряда случаев-исключений (к примеру, «the light fantastic»). Технология перевода отошла от правил, предписанных людьми, в пользу вероятностных рекомендаций, получаемых в процессе обучения на реальных примерах.
В конце 1980-х годов IBM использовала машинное обучение компьютера англо-французскому переводу путем предоставления ему двуязычных документов, подготовленных канадским парламентом. Как и в Rosetta Stone, данные документы содержали в себе несколько миллионов примеров предложений, переведенных на оба языка.
Система IBM определила взаимосвязи между словами и фразами в обоих языках и повторно использовала их для создания нового перевода. Но результаты все еще содержали очень много ошибок – системе нужно научиться обрабатывать больше данных. «А затем появился Google, который в буквальном смысле скормил этой системе весь Интернет», – рассказывает Виктор Майер-Шенбергер из Института интернета Оксфордского университета.
Каждый день Google переводит больше текста, чем расшифровывают все профессиональные переводчики мира за год. Свою работу над сервисом перевода Google, как и IBM, начинал с обучения алгоритмов сопоставлению документов на разных языках. Но затем пришло осознание того, что результаты перевода можно значительно улучшить, если научить систему тому, как на самом деле люди разговаривают на русском, французском или корейском.
Google обратился к огромной сети проиндексированных слов, объем которой стремительно приближался к фантастической библиотеке из рассказа Хорхе Луиса Борхеса «Вавилонская библиотека». Google– переводчик с английского на французский может сравнить свой начальный вариант перевода с каждой фразой на французском языке, размещенной в Интернете. В качестве примера Майер-Шенбергер приводит английское слово light (свет, легкий). Система должна понять, как именно перевести это слово на французский: lumi`ere (свет) или l'eger (легкий). Google обучался тому, что бы выбрали сами французы.
Переводчики от Google и Microsoft (тот самый, который Рик Рашид продемонстрировал в Китае) обучались в примерно одинаковых условиях: не зная о языке ничего, кроме относительной частоты использования огромного количества последовательностей слов. И все же Google может на достаточно хорошем уровне переводить на 135 письменных языках, начиная африкаанс и заканчивая зулу. Эти ИИ проводят пословный анализ текста, который сводится к расчету вероятности следующего используемого варианта. Для них слова – это набор вероятностей.
Основы алгоритма перевода более или менее понятны. Сложность возникает из-за большого количества сопоставлений, которые происходят между огромными объемами данных. Например, для того чтобы выстроить прогноз об окружающей обстановке, беспилотные автомобили Google каждую секунду собирают почти гигабайт данных. А Amazon нет равных по части того, как заставить людей купить больше, – алгоритм подбирает рекомендации товаров, основанные на миллиардах сопоставлений из миллионов других заказов.