Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Для смягчения проблемы переобучения и улучшения обобщающей способности деревьев решений используются ансамблированные методы, такие как случайный лес и градиентный бустинг. Случайный лес объединяет несколько деревьев решений и усредняет их предсказания, что позволяет получить более стабильные результаты. С другой стороны, градиентный бустинг обучает последовательность деревьев, каждое из которых исправляет ошибки предыдущего, что приводит к улучшению качества модели. Эти методы имеют большую обобщающую способность и стабильность по сравнению с отдельными деревьями решений, но их сложнее

интерпретировать из-за их составной структуры и взаимосвязей между отдельными моделями.

Пример 1

Задача:

Представим, что у нас есть набор данных, содержащий информацию о клиентах банка, включая их возраст, доход, семейное положение и другие характеристики. Наша задача состоит в том, чтобы на основе этих данных предсказать, совершит ли клиент депозит в банке или нет.

Ход решения:

1. Загрузка данных: Сначала мы загрузим данные о клиентах банка, чтобы начать анализ.

2. Предварительный анализ данных: Проведем предварительный анализ данных, чтобы понять структуру набора данных, распределение признаков и наличие пропущенных значений.

3. Подготовка данных: Выполним предварительную обработку данных, такую как кодирование категориальных признаков, заполнение пропущенных значений и масштабирование признаков.

4. Разделение данных: Разделим данные на обучающий и тестовый наборы. Обучающий набор будет использоваться для обучения модели, а тестовый – для ее оценки.

5. Обучение модели: Обучим модель на обучающем наборе данных, используя метод SVM.

6. Оценка модели: Оценим качество модели на тестовом наборе данных, используя метрики, такие как точность, полнота и F1-мера.

Пример кода:

```python

# Импорт библиотек

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report

from sklearn.datasets import load_bank_dataset

# Загрузка данных о клиентах банка

data = load_bank_dataset

X = data.drop(columns=['deposit'])

y = data['deposit']

# Предварительный анализ данных

print(X.head)

print(X.info)

# Подготовка данных

X = pd.get_dummies(X)

X.fillna(X.mean, inplace=True)

scaler = StandardScaler

X_scaled = scaler.fit_transform(X)

# Разделение данных на обучающий и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# Обучение модели SVM

svm_classifier = SVC(kernel='rbf', random_state=42)

svm_classifier.fit(X_train, y_train)

# Оценка модели

y_pred = svm_classifier.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

print(classification_report(y_test, y_pred))

```

Это пример кода, который загружает данные о клиентах банка, обрабатывает их, разделяет на обучающий и тестовый наборы, обучает модель SVM и оценивает ее производительность на тестовом наборе данных.

2.

Задачи регрессии

Задачи регрессии направлены на прогнозирование непрерывных значений целевой переменной на основе входных данных. Некоторые популярные методы решения задач регрессии включают в себя:

– Линейная регрессия

– Регрессия на основе деревьев (например, случайный лес)

– Градиентный бустинг

Рассмотрим их подробнее.

Линейная регрессия

Линейная регрессия – это классический метод в машинном обучении, который применяется для анализа и предсказания взаимосвязи между одной или несколькими независимыми переменными и зависимой переменной. Одним из ключевых предположений линейной регрессии является линейная зависимость между признаками и целевой переменной. Цель состоит в том, чтобы найти оптимальные параметры модели (коэффициенты), которые минимизируют сумму квадратов разностей между фактическими значениями зависимой переменной и предсказанными значениями, полученными с использованием линейной функции.

Преимущества линейной регрессии заключаются в ее простоте и интерпретируемости. Этот метод хорошо подходит для понимания влияния каждого признака на целевую переменную и выявления силы и направления этих взаимосвязей. Однако линейная регрессия также имеет свои ограничения, например, она предполагает линейность и постоянство отношений между переменными, что может быть неприменимо в случае сложных нелинейных зависимостей.

Выбор функции потерь и метода оптимизации в линейной регрессии играет важную роль в успешном построении модели. Функция потерь определяет, как будут оцениваться различия между фактическими и предсказанными значениями. Одной из наиболее распространенных функций потерь является среднеквадратичная ошибка (Mean Squared Error, MSE), которая минимизирует сумму квадратов разностей между фактическими и предсказанными значениями. Другие функции потерь также могут использоваться в зависимости от конкретной задачи, например, абсолютное отклонение (Mean Absolute Error, MAE) или квантильная регрессия.

Метод наименьших квадратов (OLS) – это классический метод оптимизации, применяемый в линейной регрессии. Он ищет оптимальные значения параметров модели, минимизируя сумму квадратов разностей между фактическими и предсказанными значениями целевой переменной. Однако OLS имеет аналитическое решение только для простых линейных моделей. При использовании сложных моделей или больших объемов данных метод наименьших квадратов может столкнуться с проблемами вычислительной сложности или переобучения.

Метод градиентного спуска – это итерационный метод оптимизации, который эффективно применяется в случае сложных моделей и больших объемов данных. Он основан на идее минимизации функции потерь, используя градиент функции потерь по отношению к параметрам модели. Градиентный спуск обновляет параметры модели на каждой итерации, двигаясь в направлении, противоположном градиенту функции потерь, с тем чтобы достичь минимума. Этот процесс повторяется до тех пор, пока не будет достигнуто удовлетворительное значение функции потерь или пока не будут выполнены другие критерии останова.

Поделиться:
Популярные книги

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Треугольная шляпа. Пепита Хименес. Донья Перфекта. Кровь и песок.

Бласко Висенте Ибаньес
65. Библиотека всемирной литературы
Проза:
классическая проза
5.00
рейтинг книги
Треугольная шляпа.
Пепита Хименес.
Донья Перфекта.
Кровь и песок.

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Потусторонний. Книга 2

Погуляй Юрий Александрович
2. Господин Артемьев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Потусторонний. Книга 2

Совок 13

Агарев Вадим
13. Совок
Фантастика:
попаданцы
5.00
рейтинг книги
Совок 13

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Воспитание бабочек

Карризи Донато
Детективы:
триллеры
прочие детективы
5.00
рейтинг книги
Воспитание бабочек