Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

1. Задачи классификации

Задачи классификации заключаются в присвоении объектам одной из заранее определенных категорий или классов на основе их характеристик. Некоторые основные методы решения задач классификации включают в себя:

– Логистическая регрессия

– Метод k ближайших соседей (k-NN)

– Метод опорных векторов (SVM)

– Деревья решений и их ансамбли (случайный лес, градиентный бустинг)

Рассмотрим каждый метод подробнее.

Логистическая

регрессия:

Логистическая регрессия – это мощный метод в машинном обучении, который широко применяется для решения задач классификации, особенно в ситуациях, когда необходимо предсказать, принадлежит ли объект к одному из двух классов. Несмотря на название, логистическая регрессия на самом деле используется для бинарной классификации, где целевая переменная принимает одно из двух возможных значений.

Центральным элементом логистической регрессии является логистическая функция, также известная как сигмоидальная функция. Она преобразует линейную комбинацию признаков в вероятность принадлежности объекта к определенному классу. Это позволяет модели выдавать вероятности принадлежности к каждому классу, что делает ее особенно полезной для задач, требующих оценки уверенности в предсказаниях.

В процессе обучения логистическая регрессия настраивает параметры модели, минимизируя функцию потерь, такую как кросс-энтропия. Этот процесс обучения можно реализовать с использованием различных оптимизационных методов, таких как градиентный спуск.

Логистическая регрессия имеет несколько значительных преимуществ. Во-первых, она проста в интерпретации, что позволяет анализировать вклад каждого признака в принятие решения моделью. Кроме того, она эффективна в вычислении и хорошо масштабируется на большие наборы данных. Также важно отметить, что у логистической регрессии небольшое количество гиперпараметров, что упрощает процесс настройки модели.

Однако у логистической регрессии также есть свои ограничения. Во-первых, она предполагает линейную разделимость классов, что ограничивает ее способность моделировать сложные нелинейные зависимости между признаками. Кроме того, она чувствительна к выбросам и может давать непредсказуемые результаты в случае наличия значительного количества выбросов в данных. Тем не менее, при правильном использовании и учете этих ограничений, логистическая регрессия остается мощным инструментом для решения широкого спектра задач классификации.

Пример 1

Давайте представим, что у нас есть набор данных о покупках клиентов в интернет-магазине, и мы хотим предсказать, совершит ли клиент покупку на основе его предыдущих действий. Это может быть задача бинарной классификации, которую мы можем решить с помощью логистической регрессии.

Задача:

Наша задача – на основе информации о клиентах и их действиях на сайте (например, время проведенное на сайте, количество просмотренных страниц, наличие добавленных товаров в корзину и т. д.), предсказать, совершит ли клиент покупку или нет.

Решение:

Для

решения задачи предсказания покупок клиентов в интернет-магазине мы использовали модель логистической регрессии. Это классический метод бинарной классификации, который подходит для таких задач, где требуется определить вероятность принадлежности объекта к одному из двух классов.

Сначала мы загрузили данные о клиентах из файла "customer_data.csv" с помощью библиотеки pandas. Этот набор данных содержал информацию о различных признаках клиентов, таких как время проведенное на сайте, количество просмотренных страниц, наличие добавленных товаров в корзину и другие. Кроме того, для каждого клиента было указано, совершил ли он покупку (целевая переменная).

Далее мы предварительно обработали данные, если это было необходимо, например, заполнили пропущенные значения или закодировали категориальные признаки. Затем мы разделили данные на обучающий и тестовый наборы с использованием функции `train_test_split` из библиотеки scikit-learn.

После этого мы создали и обучили модель логистической регрессии с помощью класса `LogisticRegression` из scikit-learn на обучающем наборе данных. Затем мы использовали обученную модель, чтобы сделать предсказания на тестовом наборе данных.

Наконец, мы оценили качество модели, вычислив метрики, такие как точность (`accuracy`), матрица ошибок (`confusion_matrix`) и отчет о классификации (`classification_report`). Эти метрики помогают нам понять, насколько хорошо модель справляется с поставленной задачей классификации и какие ошибки она допускает.

Таким образом, с помощью модели логистической регрессии мы можем предсказывать вероятность совершения покупки клиентом на основе его поведения на сайте, что может быть полезно для принятия решений о маркетинговых стратегиях, персонализации предложений и улучшении пользовательского опыта.

Код решения:

```python

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Загрузка данных

data = pd.read_csv("customer_data.csv")

# Предобработка данных

# Например, заполнение пропущенных значений, кодирование категориальных признаков и т.д.

# Разделение данных на обучающий и тестовый наборы

X = data.drop('purchase', axis=1) # признаки

y = data['purchase'] # целевая переменная

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Обучение модели логистической регрессии

model = LogisticRegression

model.fit(X_train, y_train)

# Предсказание на тестовом наборе

y_pred = model.predict(X_test)

# Оценка качества модели

accuracy = accuracy_score(y_test, y_pred)

conf_matrix = confusion_matrix(y_test, y_pred)

Поделиться:
Популярные книги

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Тисса горит

Иллеш Бела
Проза:
историческая проза
советская классическая проза
5.00
рейтинг книги
Тисса горит

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Пышка и Герцог

Ордина Ирина
Фантастика:
юмористическое фэнтези
историческое фэнтези
фэнтези
5.00
рейтинг книги
Пышка и Герцог

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Страж Тысячемирья

Земляной Андрей Борисович
5. Страж
Фантастика:
боевая фантастика
альтернативная история
фэнтези
5.00
рейтинг книги
Страж Тысячемирья

Полное собрание сочинений. Том 24

Л.Н. Толстой
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Полное собрание сочинений. Том 24

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4