Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Пример 1

Давайте рассмотрим пример задачи обучения с подкреплением на простом примере – агент играет в игру "Сетка мира" (Gridworld). В этой игре агент находится на игровом поле, представленном в виде сетки, и его целью является достижение целевой ячейки, избегая при этом препятствий.

Для начала определим игровое поле. Давайте создадим сетку размером 4x4, где каждая ячейка может быть либо пустой, либо содержать препятствие или целевую ячейку.

```python

import numpy as np

#

Создание игрового поля

grid_world = np.array([

[0, 0, 0, 0], # Пустая ячейка

[0, -1, 0, -1], # Препятствие (-1)

[0, 0, 0, -1], # Препятствие (-1)

[0, -1, 0, 1] # Целевая ячейка (1)

])

```

Теперь создадим простое правило для агента: если агент находится в ячейке, он может выбирать случайное действие: двигаться вверх, вниз, влево или вправо. Если агент попадает в препятствие, он не двигается и остается на месте. Если агент достигает целевой ячейки, он получает награду +10 и игра завершается.

```python

import random

# Функция для выполнения действия в игре

def take_action(state):

row, col = state

if grid_world[row, col] == -1: # Если попали в препятствие, остаемся на месте

return state

action = random.choice(['up', 'down', 'left', 'right']) # Случайное действие

if action == 'up':

row = max(0, row – 1)

elif action == 'down':

row = min(grid_world.shape[0] – 1, row + 1)

elif action == 'left':

col = max(0, col – 1)

elif action == 'right':

col = min(grid_world.shape[1] – 1, col + 1)

return (row, col)

# Функция для проверки завершения игры и получения награды

def get_reward(state):

row, col = state

if grid_world[row, col] == 1: # Если достигли целевой ячейки

return 10, True

return 0, False # Игра продолжается

# Функция для запуска игры

def play_game:

state = (0, 0) # Начальное состояние агента

total_reward = 0

done = False

while not done:

state = take_action(state)

reward, done = get_reward(state)

total_reward += reward

return total_reward

# Запуск игры

total_reward = play_game

print("Total reward:", total_reward)

```

Это простой пример задачи обучения с подкреплением, где агент играет в игру "Сетка мира", перемещаясь по полю и получая награду за достижение целевой ячейки.

Пример 2

Рассмотрим пример задачи с использованием обучения с подкреплением. Давайте представим симуляцию игры в кости, где агент должен научиться выбирать наилучшие действия (выбор числа от 1 до 6) для максимизации своего выигрыша.

```python

import numpy as np

class DiceGame:

def __init__(self):

self.state = 0 #

текущее состояние – результат броска кости

self.done = False # флаг окончания игры

self.reward = 0 # награда за текущий шаг

def step(self, action):

# Выполняем действие – бросаем кость

self.state = np.random.randint(1, 7)

# Вычисляем награду

if action == self.state:

self.reward = 10 # выигрыш, если действие совпало с результатом броска

else:

self.reward = 0 # нет выигрыша

# Устанавливаем флаг окончания игры (игра заканчивается после одного хода)

self.done = True

return self.state, self.reward, self.done

def reset(self):

# Сбрасываем состояние игры для нового эпизода

self.state = 0

self.done = False

self.reward = 0

return self.state

# Пример простой стратегии выбора действий – всегда выбираем число 3

def simple_strategy(state):

return 3

# Основной код обучения с подкреплением

env = DiceGame

total_episodes = 1000

learning_rate = 0.1

discount_rate = 0.99

q_table = np.zeros((6, 6)) # Q-таблица для хранения оценок ценности действий

for episode in range(total_episodes):

state = env.reset

done = False

while not done:

action = simple_strategy(state)

next_state, reward, done = env.step(action)

# Обновление Q-таблицы по формуле Q(s,a) = Q(s,a) + ? * (reward + ? * max(Q(s',a')) – Q(s,a))

q_table[state – 1, action – 1] += learning_rate * (reward + discount_rate * np.max(q_table[next_state – 1, :]) – q_table[state – 1, action – 1])

state = next_state

print("Q-таблица после обучения:")

print(q_table)

```

Этот код реализует простую симуляцию игры в кости и обновляет Q-таблицу на основе наград, полученных в процессе игры. Мы используем простую стратегию, всегда выбирая число 3. Однако, в реальных приложениях, агент мог бы изучать и выбирать действия на основе обучения Q-таблице, которая представляет собой оценку ценности различных действий в каждом состоянии.

Таким образом, таксономия задач машинного обучения помогает организовать разнообразие задач в соответствии с их основными характеристиками, что облегчает понимание и выбор подходящих методов и алгоритмов для решения конкретных задач.

1.3.2 Подробный анализ типов задач и подходов к их решению

В данном разделе мы проведем подробный анализ различных типов задач, с которыми сталкиваются специалисты в области машинного обучения, а также рассмотрим основные подходы к их решению.

Поделиться:
Популярные книги

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Печать пожирателя 2

Соломенный Илья
2. Пожиратель
Фантастика:
городское фэнтези
попаданцы
аниме
сказочная фантастика
5.00
рейтинг книги
Печать пожирателя 2

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Имя нам Легион. Том 3

Дорничев Дмитрий
3. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 3

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Сильная. Независимая. Моя

Бигси Анна
5. Учителя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сильная. Независимая. Моя

Фею не драконить!

Завойчинская Милена
2. Феями не рождаются
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Фею не драконить!

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II