Чтение онлайн

на главную - закладки

Жанры

Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:

4.26. Влияние обратной связи на работу усилителей

Рассмотрим, как влияет обратная связь на работу схемы. Действие обратной связи проявляется прежде всего в том, что можно заранее оценить усиление схемы и уменьшить искажения, а также в том, что изменяются входной и выходной импедансы.

Предварительная оценка усиления. Коэффициент усиления по напряжению равен А/(1 + АВ). Если считать величину коэффициента А бесконечно большой, то получим К = 1/В. Этот результат мы получили раньше, когда рассматривали неинвертирующий усилитель, в котором сигнал обратной связи

подавался на инвертирующий вход с помощью делителя напряжения, подключенного к выходу (рис. 4.69).

Коэффициент усиления по напряжению при замкнутой цепи обратной связи представляет собой величину, обратную коэффициенту передачи делителя напряжения. В том случае когда коэффициент А ограничен, обратная связь все равно уменьшает влияние изменений А (происходящих под воздействием частоты, температуры, величины сигнала и т. п.). Допустим, например, что зависимость коэффициента А от частоты можно представить в виде графика, показанного на рис. 4.67.

Рис. 4.67.

Усилитель с такой характеристикой, без всякого сомнения, можно отнести к числу плохих (коэффициент усиления изменяется в 10 раз). Представим, что мы ввели обратную связь и В = 0,1 (подойдет простой делитель напряжения). Коэффициент усиления при замкнутой цепи обратной связи изменяется от 1000/[1 + (1000·0,1)] или 9,9 до 10 000/[1 + (10 000·0,1)], или 9,99. В том же диапазоне частот изменение коэффициента усиления составляет всего 1 %. Если пользоваться терминологией, принятой в технике звуковых частот, то неравномерность характеристики усилителя без обратной связи в полосе частот составляет +10 дБ, а при наличии обратной связи неравномерность характеристики составляет всего ± 0,04 дБ. Если включить последовательно три таких каскада, то коэффициент усиления вновь будет равен 1000, а неравномерность остается почти такой же малой, как у одного каскада с обратной связью. Подобная задача (а именно необходимость получения плоской характеристики телефонного усилителя) привела к изобретению отрицательной обратной связи. Изобретатель Гарольд Блэк писал (журнал Electrical Engineering, 53, 114 (1934)): «Установлено, что если взять усилитель, коэффициент усиления которого больше, чем нужно, скажем на 40 дБ (10 000-кратный запас по мощности), а затем подключить к нему цепь обратной связи таким образом, чтобы погасить избыточное усиление, то оказывается, что постоянство усиления заметно улучшается, а линейность увеличивается».

Если взять производную от G по А (dG/dA), то нетрудно показать, что уменьшение относительных изменений коэффициента усиления при замыкании петли обратной связи определяется величиной коэффициента грубости: К/К = [1/(1 + АВ)]А/А. Следовательно, для получения хорошей характеристики необходимо, чтобы коэффициент петлевого усиления АВ был значительно больше единицы. Это равносильно условию, согласно которому коэффициент усиления при разомкнутой петле обратной связи должен быть намного больше, чем коэффициент усиления при замкнутой петле обратной связи.

Увеличение стабильности сопровождается уменьшением нелинейности, которая определяется изменениями коэффициента усиления в зависимости от уровня сигнала.

Входной импеданс. При построении схемы с обратной связью из входного напряжения или тока вычитается некоторая часть, пропорциональная выходу (такую обратную связь называют соответственно последовательной или параллельной обратной связью). Например, в неинвертирующем ОУ часть выходного напряжения вычитается из дифференциального напряжения, действующего на входе, а в инвертирующем происходит вычитание части входного тока. В этих двух случаях обратная связь противоположным образом влияет на входной импеданс.

Обратная связь со сложением напряжения увеличивает входной импеданс при замкнутой петле обратной связи в (1 + АВ) раз (по сравнению с разомкнутой схемой), в то же время обратная связь со сложением тока уменьшает

его во столько же раз. При стремлении коэффициента передачи петли обратной связи к бесконечности входной импеданс (со стороны входа усилителя) стремится к бесконечности или к нулю соответственно. Это и понятно, так как обратная связь со сложением напряжения стремится вычесть из входного такой сигнал, что в результате падение напряжения на входном сопротивлении усилителя будет меньше в АВ раз; это своего рода следящая связь. Обратная связь со сложением тока уменьшает сигнал на входе усилителя, подавляя его током, текущим по цепи обратной связи.

Посмотрим, как обратная связь меняет действующее значение входного импеданса на примере обратной связи со сложением напряжений. Аналогичные рассуждения вы можете провести и для второго случая. Используем модель ОУ с конечным входным сопротивлением (рис. 4.68).

Рис. 4.68.

Входное напряжение Uвх уменьшается на величину ВUвых, и на выходах усилителя действует дифференциальное напряжение UдифUвх ВUвых. Входной ток при этом равен

Отсюда действующее значение входного сопротивления равно

R'вхUвх/Iвх = (1 + AB)Rвх

Классическая схема неинвертирующего ОУ с обратной связью имеет точно такой вид, как показано на рис. 4.69.

Рис. 4.69.

Для этой схемы В = R1/(R1 + R2), коэффициент усиления по напряжению определяется выражением U = 1 + R2/R1, для идеального случая коэффициент усиления по напряжению при разомкнутой цепи обратной связи А равен бесконечности и входной импеданс также равен бесконечности. Для конечного коэффициента передачи в петле обратной связи справедливы выражения, полученные выше.

Схема инвертирующего ОУ отличается от схемы неинвертирующего ОУ и анализировать ее следует отдельно. Лучше всего рассматривать ее как сочетание входного резистора, управляющего схемой с обратной связью со сложением тока (рис. 4.70).

Рис. 4.70. Входной и выходной импедансы усилителя с передаточным сопротивлением, Zвх = R2/(1 + k), Zвых = (без ОС)/(1 + А) (а); инвертирующего усилителя, Zвх = R1R2/(1 + А), Zвых(без ОС)/(1 + АB), В = R1/(R1 + R2).

Поделиться:
Популярные книги

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Наследник жаждет титул

Тарс Элиан
4. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник жаждет титул

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Хозяин Теней

Петров Максим Николаевич
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Ищу жену с прицепом

Рам Янка
2. Спасатели
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Ищу жену с прицепом

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY