Чтение онлайн

на главную

Жанры

Искусство влагометрии твердых и сыпучих материалов
Шрифт:

При измерении влажности двумя ИВлаг разных компаний может получаться Погр из-за того, что использованы не согласующиеся между собой имитаторы влажности. На рис. 12.2. приведены сравнительные хар-ки зависимости оценки влажности для двух разных конструкций ИВлаг с подключением к ним сопротивлений

Рис. 12.2. Сравнительные хар-ки ИВлаг двух фирм.

Мы видим, что хар-ки отличаются друг от друга. Так, например, если ИВлаг 1 дает

показания при сопротивлении 100 ком равным 35, 2 % W, то для ИВлаг 2 при том же сопротивлении значение влажности будет соответствовать 50 %. Таким образом разность показаний между двумя ИВлаг dW = 14,8 %. Естественно при уменьшении влажности эти расхождения будут уменьшаться.

Статическая хар-ка зависимости активного сопротивления от влажности, построенная в логарифическом масштабе по оси сопротивлений имеет перегиб в точке соответствующей 30 % влажности.

В диапазонах от 0–30 % и 0–150 % влажности электрические свойства древесины изменяются от проводника до диэлектрика по мере уменьшения влажности.

Формула измерения сопротивления показывает зависимость сопротивления от таких параметров как удельное сопротивление древесины р, площадь поверхности электродов S, расстояние между электродами d.

В дополнительную Погр измерения может входить площадь контакта игл с древесным веществом и степень ее прижима. Чем толще игла, тем сильнее образуется контакт и происходит отжим влаги в месте контакта. Уплотненное древесное пространство между игольчатым электродом и основной массой древесины имеет аналогию включения дополнительного сопротивления.

Это мы показываем на рис. 12.3.

Рис. 12.3. Причины образования Погр при контактировании в месте соприкосновения иглы с древесиной и их электрическая интерпретация.

13. Временной дрейф влаги в процессе контроля

На точность измерения влияют поверхностная и внутренняя влага. Поверхностная влага формируется в результате конденсата, выпадения дождя. Внутренняя влага создается в результате недосушки древесины и зависит от времени вылеживания древесины после сушки и времени измерения.

Точкой отсчета берется начальный момент измерения только что просушенной древесины. Затем эти образцы, которые не теряют свою влагу замеряются через час и затем, через 20 часов. Таким образом мы видим, что хар-ка изменяет свое местоположение, хотя значение действительной влажности не меняется.

Рис. 13. Семейство зависимостей R=f(W%), построенных при временном дрейфе влаги в процессе контроля.

На практике для конкретного ИВлаг рис. 9.11 означает следующее: при измерении влажности в начале мы имеем показание 18,7 %, через час оно изменилось до 20,1 %, через 20 часов мы определили, что оценка влажности стала равна 23,1 %. То есть Погр измерения от такого временного перераспределения влаги внутри

образца дает Погр в смещении хар-к на dW= 4,4 %. На самом деле влажность образца в действительности не менялась и была равна 21,2 %.

Эти выкладки позволяют нам сделать следующий вывод: в зависимости места и времени контроля влажности при неравномерно распределенной влажности мы будем получать разные значения влажности. Погр измерения только в этом случае составила d=4,4 %.

14. Влияние температуры древесины

Известно, что электрическое сопротивление древесины изменяется под воздействием температуры. Однако вопрос, касающийся корректировки по температуре не так прост. При втыкании игл в диэлектрик мы должны реально представлять весь процесс взаимодействия. В процессе контактирования тепло в месте соединения будет распределяться между иглой и древесиной. Следовательно по всему объему будет одно значение температуры, а по месту соединения будет возникать иная температура. Это мы показываем на рис. 14.

Рис. 14. Графическая интерпретация места соединения иглы с древесиной и распределения температур в месте контактирования.

Температура в месте контактирования будет значительно ниже, так как игла обладает другой теплопроводностью и энергии для равномерного распределения температуры не будет достаточно для выравнивания. Кроме того у диэлектрика (древесины) отсутствует дополнительная энергия для поддержания температуры в месте контакта, так как сама древесина обладает низкой теплопроводностью и теплоемкостью.

Следовательно, коррректировка по температуре носит чаще рекламный характер. Она не всегда компенсирует изменение сопротивления от температуры. Наиболее приемлемый вариант – это установка датчика температуры в игле. Но этого нет в ИВлаг.

15. Миф о точности безигольчатой влагометрии

Метод измерения влажности, основанный на зависимости диэлектрической проницаемости от влажности называют диэлькометрическим или емкостным. Чаще всего с помощью этого метода создаются Влаг с датчиками, не требующими втыкания игл в древесину и их иногда называют бесконтактными или безигольчатыми (БВлаг).

На практике отделить реактивную составляющую (связанную с т. н. током смещения) от активной (связанной с током проводимости) очень сложно. Поэтому большинство емкостных Влаг фактически измеряет комплексное сопротивление. Для древесины диэлектрическая проницаемость вдоль волокон для ели составляет отн=3,06. С увеличением влажности отн увеличивается. Увеличиваются и потери (активная составляющая тока).

Современные тенденции развития средств контроля и управления требуют своих правил, к которым можно отнести: – высокая информативность метода измерения,

– возможность получения многопараметровых данных для комбинированной обработки для повышения точностных хар-к,

– высокое быстродействие контроля,

– бесконтактность измерения,

– высокая чувствительность в широком диапазоне,

– исключение влияния мешающих факторов,

– малая трудоемкость измерения,

– высокая проникающая способность,

– возможность измерения при резко меняющихся температурах,

– возможность измерения в труднодоступных местах,

Поделиться:
Популярные книги

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Боярышня Дуняша 2

Меллер Юлия Викторовна
2. Боярышня
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Боярышня Дуняша 2

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Русь. Строительство империи 2

Гросов Виктор
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи 2

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Совершенно несекретно

Иванов Дмитрий
15. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совершенно несекретно

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Задача Выжить

Атаманов Михаил Александрович
Фантастика:
боевая фантастика
7.31
рейтинг книги
Задача Выжить

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Попаданка 2

Ахминеева Нина
2. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 2