История инженерной деятельности
Шрифт:
Во второй половине 30-х годов развиваится исследования по созданию машин автоматического действия. В США, Германии, Советском Союзе начинается интенсивная работа над теорией автоматов. Важную роль в этом отношении сыграли труды И.И. и С. И. Артоболевских. В Ленинградском политехническом институте С. В. Вехирев и Н. И. Колчин организовали первую в Советском Союзе кафедру теории машин автоматического действия. Одним из первых советских ученых, которые работали в этом направлении, был А. П. Павлов. В 1937 г. он опубликовал работу «Методика построения механизмов-автоматов» и в дальнейшем неоднократно обращался к этой теме.
Следует заметить, что в эти годы началась разработка механики материалов и теории их прочности. Большие объемы строительных работ, новые отрасли машиностроения (авто- и авиастроение и др.) требовали металла более высокого качества. Кроме того, новые
Возникают и новые методы обработки металлов. Важнейшим из них стала электросварка. Основоположником сварки в Советском Союзе был выдающийся машиностроитель Е. А. Патон (1870–1953). Интересно, что происхождение сварки связано с одной из важнейших отраслей технологии строительных работ – скреплением элементов металлических конструкций. В 1929 г. Патон организовал при кафедре инженерных сооружений Всеукраинской академии наук электросварочную лабораторию со штатом шесть человек. Одной из первых задач, поставленных и решенных лабораторией было определение надежности и прочности сварных соединений железных конструкций.
В 1934 г. на базе лаборатории был открыт институт электросварки АН УССР. На протяжении 30-х годов разработана технология электросварки и решены многие задачи прочности сварных соединений. В 1939–1940 гг. Патон завершил создание нового метода скоростной автоматической сварки под флюсом, который получил широкое распространение в годы Великой Отечественной войны.
Метод соединения элементов металлоконструкций при помощи сварки был лишь одним из практических выходов прикладной механики. 20 – 30-е годы принесли много проблем, связанных с созданием новых конструкций. В строительную практику начал внедряться железобетон, появились рамные конструкции, элементы которых работают в основном на изгиб. Для расчета таких конструкций были созданы новые методы, основанные на учении деформации. Если для ХІХ в. характерной конструкцией мостов были фермы, то в 30-х годах ХХ ст. вновь появились арки, а это поставило перед строительной механикой новые задачи.
В середине 50-х гг. ХХ в. начинается период современной научно-технической революции. Изменяются интересы исследователей, работающих в разных направлениях механики. Интересы эти в значительной мере обусловленны практическими задачами, поэтому в аналитической механике большой интерес стали проявлять к динамике переменной массы, неголономной механике, теории гироскопов. Большое распространение получает нелинейная механика, занявшая важное место в исследованиях колебательных процессов; идеи теории колебания пересеклись едва ли не во всех направлениях прикладной механики. Все большее значение получают исследования находящиеся на стыке различных направлений механики, а также на стыке механики и математики, геологии, метеорологии, биологии.
Одной из характерных особенностей научно-технической революции является то, что наука становится непосредственной производительной силой: она вызывает к жизни технические решения, определяет появление новых отраслей техники, новых видов производства. В ее развитии теперь преобладает интегральный путь, когда новое направление возникает на стыке других, зачастую разнородных.
Например, в механике применение метода графостатики к решению задач динамики механизмов определило становление кинетостатики и, наоборот, кинематические графоаналитические методы нашли применение в строительной механике. Применение методов гидродинамики к решению задач теории трения вызвало к жизни гидродинамическую теорию смазки, появились новые направления на стыке теории колебаний со строительной механикой, механикой машин, механикой материалов и т.д. В результате современная механика разделилась на много направлений, которые сливаются, с одной стороны, с математикой, с другой – с различными направлениями техники. Есть общее между различными направлениями механики, свойственное периоду научно-технической революции. Это учет реальных условий работы изучаемых объектов, обусловленный ростом рабочих скоростей и параметров. Новые отрасли производства, возникающие в связи с развитием атомной энергетики, освоением космоса, настройкой машин большей мощности, должны иметь высокую степень надежности, подтвержденную точностью расчетов. Создание электронных вычислительных машин, позволивших механизировать вычислительные работы, также является одним из аспектов современной научно-технической революции.
С середины 50-х годов в механике машин начинается быстрое развитие экспериментальных и математических методов исследования
Математические, строительные, горные, полиграфические, текстильные, сельскохозяйственные и другие машины имеют в своем составе механизмы с переменной массой, частичная потеря массы влияет на динамику всей системы в целом. Все большее значение приобретает синтез механизмов, а задачи синтеза механизмов вплотную связаны с проблемами теории машин автоматического действия и с проблемой создания роботов и манипуляторов. Технические устройства, предназначенные для воспроизведения функций человеческой руки, широко применяются в современных производствах: в атомной энергетике, при космических исследованиях, при исследовании морских глубин, для работы при высоких температурах, в химической промышленности и т.п.
В 60 – 70-х гг. появилось много работ в области механики, обусловленные, в первую очередь, потребностями техники. Но многие исследования определялись также и чисто теоретическими интересами, и пересечение их с техническими проблемами явилось уже вторичным, т.е. наука готовила почву для дальнейшего развития техники. Например, современные самолеты – результат приложения сил едва ли не всех отраслей и направлений механики: строительной, теории упругости и теории прочности, которые должны обеспечить прочность конструкций, нелинейной механики, учитывающей колебательные процессы, теории устойчивости, теории механизмов и многих других, в особенности аэродинамики. В связи с повышением скоростей полета и появления сверхзвуковых самолетов в 60-е гг. были проведены глубокие теоретические и экспериментальные исследования в области сверхзвуковых течений газа. Были разработаны расчетные методы для гиперзвуковых скоростей, создана теория сильного взрыва в покоящемся газе и т.д. В результате возникла теоретическая база, облегчившая создание новых высокоскоростных самолетов. В 1955 г. советская авиационная промышленность начала выпускать новые самолеты типа ТУ–104 с двигателями турбореактивного типа. В 1957 г. на пассажирской линии был выпущен самолет ТУ-114, а в 1968 г. – ТУ-154 с тремя реактивными двигателями, рассчитанными на перевозку 164 человек со скоростью до 1000 км/час на расстояние до 6000 км. Одновременно советская промышленность начала выпускать и турбовинтовые самолеты. В 1965 г. в СССР был построен самый большой в мире транспортный самолет «Антей» с четырьмя турбовинтовыми двигателями по 15 тыс. л.с. каждый, в 1968 г. – первый в мире сверхзвуковой пассажирский самолет ТУ-144.
Несколько позже подобные самолеты были построены в США («Боинг – 2707»); английская и французская авиапромышленность выпустила совместно самолет «Конкорд». Эти самолеты имеют крейсерскую скорость 2500 – 3000 км/час.
Современная НТР вызвала к жизни много новых технических проблем. Интересно, что сейчас под обобщающим названием «строительная механика» понимают уже целый ряд самостоятельных наук и научных направлений. Из строительной механики выделились в отдельные направления строительная механика стержневых систем, висячих систем, пластин и оболочек. При этом помимо от статических методов расчета строительных конструкций во многих случаях используются кинематические и динамические методы. Значительное развитие получили исследования в области теории устойчивости конструкций.
На стыке наук постоянно появляются новые направления: теория атомов, молекулярная теория, теория спектров излучения, аэродинамика газовых потоков, некоторые направления авиационной техники, электродинамика и другие науки небесных туманностей, небесных тел, космических структур; зарождается новое научное направление – космическая аэродинамика. ХХ век расширил диапазон исследований. Но как показывает практика, опыт – не предел, ибо развитие человеческого знания идет по спирали, которая уходит в бесконечность. На этом пути вклад отечественных ученых безмерен, многогранен и актуален.
В Ы В О Д Ы
Еще в далекой древности на Руси умели делать разнообразные вещи – механические устройства, отличающиеся сложностью, оригинальным решением, что создавало благодатную почву для теоретического обоснования и зарождения теории машин, механизмов, строительных конструкций.
В ХVII–XVIII вв. появляются сочинения по механике, написанные учеными, разнообразные переводы с латинского, служившие источником знаний для многих поколений механиков. Появляются работы по проблемам трения, различным проблемам инженерного дела и другие.