Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Хендрик Антон Крамере родился 17 декабря 1894 г. в Роттердаме в семье врача. Он обучался в Лейденском университете под руководством П. Эренфеста (1880—1933), который с 1912 г. занял место Лоренца. В 1916 г. Крамере отправился в Копенгаген, для работы с Нильсом Бором. Когда в 1920 г. открылся Институт Теоретической Физики Бора, Крамере был сперва ассистентом, а затем в 1924 г. лектором. В 1926 г. он принял должность заведующего кафедрой теоретической физики в Утрехте, а в 1934 г. вернулся в Лейден как приемник Эренфеста, который в сентябре 1933 г. покончил жизнь самоубийством. С 1936 г. вплоть до своей смерти 24 апреля 1952 г. Крамере преподавал в Лейдене, и посетил ряд стран, включая США.

В Копенгагене Крамере работал над проблемой дисперсии. В 1924 г. он написал выражение, которое вынужденное излучение было принято во внимание. Основной идеей его работы было то, что дисперсию не следует вычислять, рассматривая

реальную орбиту электрона, классически взаимодействующего с электромагнитной волной. Вместо этого атом заменяется набором гипотетических осцилляторов, чьи частоты соответствуют скачкам между стационарными состояниями модели Бора. Таким образом, каждый осциллятор соответствует одному из возможных атомных переходов. Набор этих фиктивных (виртуальных) осцилляторов был назван Альфредом Ланде (1888—1975) «виртуальным оркестром». Таким образом, этот виртуальный оркестр является формальной заменой для излучения и, тем самым, неявно становится представлением самого квантового излучателя.

Разумеется, при этом возможно иметь положительные члены, которые соответствуют переходу из состояния с низшей энергии в состояние с высшей энергией, который характеризуется поглощением фотона, и отрицательные члены, которые соответствуют обратному переходу с высшего на низшее состояние, с испусканием фотона. Отрицательный вклад добавляет к дисперсии то, что мы укажем как «отрицательная дисперсия», из-за излучающих осцилляторов, и аналогичен отрицательному поглощению, представляемому коэффициентом Эйнштейна для вынужденного излучения. Т.е., как писал Крамере в своей работе в 1925 г.: «Световые волны на этой частоте, проходя через большое число атомов в рассматриваемом состоянии, будут увеличиваться в интенсивности».

Используя весьма изощренную спектроскопическую технику, Ладенбург и его сотрудники изучили эффект отрицательной дисперсии в 1926 и 1930 гг. В одном из этих исследований, выполненных в сотрудничестве с Г. Копферманом (1895—1963), Ладенбург исследовал дисперсию газа неона вблизи его красных линий испускания. Неон возбуждался в стеклянной трубке электрическим разрядом, примерно так, как это делается сейчас в рекламных устройствах. Была измерена дисперсия как функция интенсивности от величины тока разряда. Они обнаружили, что при увеличении тока выше некоторого значения, дисперсия уменьшается (т.е. падает разница от показателя преломления, равного единице). Убедительно наблюдалось, что эффект отрицательной дисперсии можно объяснить уменьшением дисперсии, поскольку увеличивалось число атомов в высшем состоянии. Эти эксперименты явились первым экспериментальным доказательством существования отрицательных членов в уравнении дисперсии. Если бы эти измерения были бы продолжены систематически, усиление за счет вынужденного излучения, вероятно, могло бы быть получено в то время.

Другие исследователи изучали эффекты вынужденного излучения. Одним из них был Дж. ван Флек (1899—1980), один из наиболее выдающихся американских физиков-теоретиков среди основателей современной теории твердого тела и, в частности, магнетизма. Он получил свою докторскую степень в Гарварде в 1922 г. за первую в Америке диссертацию по квантовой механике, и в 1977 г. получил вместе с Н. Ф. Мотом и П. В. Андерсоном Нобелевскую премию за «квантово-механическое описание магнитных свойств вещества». Другим был американец Р. Толмен (1881—1948) — специалист по теории относительности и статистической механики, который открыл эффект, демонстрирующий существование свободных электронов в металлах. Они наблюдали, что вынужденное излучение, названное ван Флеком «индуцированным излучением» может привести к отрицательному поглощению, и Толмен писал, что «...молекулы, находящиеся в верхнем состоянии, могут возвратиться в нижнее квантовое состояние таким образом, что первоначальный пучок усиливается за счет «отрицательного поглощения». После столь ясной основы для изобретения лазера Толмен сказал, что в экспериментах по поглощению, которые обычно выполняются, величиной отрицательного поглощения можно пренебречь.

Причина, почему ученые считали, что явления, связанные с вынужденным излучением, не дают существенных экспериментальных эффектов, заключается в тех следствиях, которые получаются при использовании закона Максвелла-Больцмана (выведенного в конце 19 столетия), который устанавливает вероятность нахождения при равновесии системы, обладающей определенной энергией. Этот закон, используемый в нашем случае для набора атомов, находящихся в термическом равновесии, в основном или в возбужденном состоянии, утверждает, что число атомов в возбужденном состоянии всегда много меньше числа атомов, находящихся в основном состоянии. В природе все физические системы находятся в тепловом равновесии или очень мало отличаются от него и быстро в него возвращаются. Поэтому в случае атомов, следует ожидать, что число возбужденных атомов всегда будет малым по сравнению с атомами, находящимися в основном состоянии.

Тем самым разумно полагать, что эффект вынужденного излучения, который требует наличия возбужденных атомов, будет очень мал.

Позднее, в 1940 г., российский ученый В. А. Фабрикант в своей докторской диссертации показал, что если число молекул в возбужденном состоянии могло быть больше, чем число молекул в основном состоянии, то могло бы быть усиление излучения. Однако эта диссертация не была опубликована и, кажется, не имела последствий даже в России. Его предположение стало известным только тогда, когда после изобретения мазера Фабрикант получил российский патент.

В конце концов в 1947 г. У. Лэмб (г. р. 1913) и Р. Ризерфорд (г. р. 1912) захотели проверить точность предсказания Поля Дирака об энергетических уровнях и спектральных линиях водорода. Предсказание Дирака утверждало, что атом водорода имеет два возможных состояния с равными энергиями. В знаменитом эксперименте, сделанном при изучении разряда в водороде, эти исследователи обнаружили, что имеется маленькое различие между этими энергетическими уровнями. Этот «лэмбовский сдвиг» показал, что нужна ревизия теории взаимодействия электрона с электромагнитным излучением. За этот результат Лэмб в 1955 г. получил Нобелевскую премию по физике, которую он разделил с Поликарпом Куршем. В приложении к своей работе, опубликованной в 1950 г., Лэмб и Ризерфорд, обсуждая результаты, указали, что в их эксперименте могли быть осуществлены условия достижения инверсной населенности (т.е. больше возбужденных атомов, чем атомов, находящихся в основном состоянии). Однако они заключили, что их расчеты были слишком оптимистичны, и они не предприняли усилий для дальнейших проверок. Позднее Лэмб писал, что в то время концепция отрицательного поглощения и ранние исследования были новыми для них и что в любом случае их интересы были принципиально устремлены на изучение тех вещей, которые принесли ему Нобелевскую премию. По этой причине они не исследовали тщательно аспекты проблемы, связанной с вынужденным излучением.

ГЛАВА 7

МИКРОВОЛНЫ

Мы теперь возвращаемся к концу 19 столетия, во времена сразу же после публикации (1873 г.) знаменитой работы Treatise on Electricity and Magnetism Максвелла.

Несмотря на прогресс, сделанный Максвеллом и его первыми последователями в теории электромагнитных колебаний, связь между классической электродинамикой и теорией света не была найдена, кроме интуитивной идеи Максвелла, что электромагнитные волны и световые волны имеют одну природу. Ирландский физик Джордж Френсис Фитцджеральд (1851 — 1901) заложил первый камень в 1882 г., указав, что если унификация, указанная Максвеллом, правильна, то должна быть возможность генерировать излучаемую энергию чисто электрическими способами. Он утверждал: «Представляется высоко вероятным, что энергия переменных токов частично излучается в пространство и, тем самым, теряется для нас», обращая внимание только на отрицательную сторону явления, и описывал методы, с помощью которых можно было бы получить излучаемую энергию. Однако он замечал, что трудность лежит в обнаружении таких волн, когда они будут получены, поскольку подходящих детекторов еще не существовало.

Экспериментальное открытие электромагнитных волн

Параллельно с теоретическими изучениями уравнений Максвелла проводились экспериментальные исследования по генерации электрических колебаний, получаемых при разряде обычного конденсатора в электрической цепи, и выявляемые как осциллирующий ток в этой цепи. С 1847 г. Герман фон Гельмгольц доказал, что в некоторых случаях разряд конденсатора должен носить колебательный характер. Вильям Томсон в 1853 г. дал математическую формулу, устанавливающую, при каких параметрах компонентов цепи в ней получаются колебания.

Работая с колебательными цепями такого вида, Генрих Герц, молодой и тогда неизвестный немец, добился успеха в генерировании и обнаружении электромагнитных волн.

Генрих Герц (1857—1894) родился в Гамбурге. Он был сыном прокурора, ставшего позднее сенатором. Будучи блестящим студентом, он в равной степени преуспевал и в гуманитарных дисциплинах, и в науках. Также он показал большие способности в проектировании и создании научной аппаратуры. Предполагалось, что молодой Герц последует традициям семьи в области права, но с десяти лет он стал интересоваться естественными науками и после обучения в ряде школ решил изучать инженерное дело в Дрезденском политехникуме в 1876 г. Когда ему исполнилось 20, он был призван в армию. После службы он решил закончить свое инженерное обучение в Мюнхене, но вскоре оставил инженерное поприще ради физики. В 1878 г. он поступил в Берлинский университет для работы под руководством Гельмгольца и Кирхгофа и в 1880 г. получил докторскую степень.

Поделиться:
Популярные книги

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Глубина в небе

Виндж Вернор Стефан
1. Кенг Хо
Фантастика:
космическая фантастика
8.44
рейтинг книги
Глубина в небе

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5