Чтение онлайн

на главную - закладки

Жанры

Изложение системы мира
Шрифт:

Глава XVI О ЗЕМНОЙ АТМОСФЕРЕ И АСТРОНОМИЧЕСКОЙ РЕФРАКЦИИ

Земля окружена упругой разреженной и прозрачной средой, простирающейся на большую высоту. Как и все другие тела, она имеет вес, который уравновешивает вес ртутного столба в барометре. На параллели 50g [45°] при температуре тающего льда и при средней высоте ртутного столба в барометре на уровне моря, высоте, которая может быть принята равной 0.76 м, вес воздуха относится к весу такого же объёма ртути как единица относится к 10477.9. Отсюда следует, что, если подняться на 10.4779 м, высота столба ртути в барометре уменьшится почти точно на 1 мм и что, если бы плотность атмосферы везде была бы одинакова, её высота была бы 7963 м. Но воздух сжимаем, и если считать его температуру постоянной, то в соответствии с общим законом, которому подчиняются газы и пары жидкостей, плотность его пропорциональна весу, сжимающему этот воздух, и, следовательно, высоте барометра. Поэтому нижние слои воздуха, сжатые верхними, оказываются плотнее последних, которые делаются всё более разреженными по мере увеличения высоты над Землёй. Если бы у всех слоёв

воздуха была одинаковая температура, то при возрастании высоты в арифметической прогрессии плотность верхних слоёв уменьшалась бы в геометрической. Чтобы это показать, рассмотрим вертикальный столб воздуха, пересекающий два бесконечно близких слоя атмосферы. Верхняя часть этого столба будет сжата меньше, чем соответствующая нижняя часть, на величину веса маленького столбика воздуха, заключённого между этими двумя частями. Так как температура предполагается одинаковой, разность сжатий двух рассматриваемых слоёв будет пропорциональна разности их плотностей. Если отвлечься от изменения силы тяжести с высотой, эта разность пропорциональна весу маленького столбика и, следовательно, произведению его плотности на длину. Так как оба слоя предполагались бесконечно близкими, плотность столбика можно считать равной плотности нижнего слоя. Таким образом, дифференциальное изменение этой плотности пропорционально её произведению на изменение высоты. Следовательно, если изменить эту высоту на равные величины, отношение дифференциала плотности к самой плотности будет постоянным, что характерно для геометрической убывающей прогрессии, у которой все члены между собой бесконечно близки. Отсюда следует, что при возрастании высоты слоёв в арифметической прогрессии их плотность уменьшается в геометрической прогрессии и их логарифмы, как гиперболические, так и табличные, убывают в арифметической прогрессии.

Эти данные были использованы для измерения высот с помощью барометра. Предполагая, что температура воздуха везде одинакова, исходя из предыдущей теоремы, можно получить разность высот двух станций, умножая на постоянный коэффициент разность логарифмов высоты ртути в барометрах этих станций. Чтобы определить этот коэффициент, достаточно одного наблюдения. Так, мы уже видели, что если при температуре ноль градусов на нижней станции высота столба ртути в барометре была равна 0.76000 м, а на верхней — 0.75999 м, то эта станция находится выше нижней на 0.104779 м. Следовательно, постоянный коэффициент равен этой величине, разделённой на разность табличных логарифмов чисел 0.76000 и 0.75999, что даёт для него 18 336 м. Но это правило для измерения высоты с помощью барометра нуждается в некоторых видоизменениях, которые мы сейчас изложим.

Температура атмосферы не одинакова: она уменьшается с высотой. Характер этого уменьшения непрерывно изменяется. Но по среднему результату из многих наблюдений можно оценить это уменьшение в 16 или 17 градусов на 3000 м высоты. Кроме того, воздух, как и все тела, расширяется при нагревании и сжимается при охлаждении, а путём очень точных опытов было установлено, что его объём, взятый за единицу при температуре 0°, изменяется, как и у всех газов и паров, на 0.00375 на каждый градус температуры; необходимо принять это во внимание при вычислении высот, так как ясно, что для получения такого же понижения высоты барометра надо подняться тем выше, чем пересекаемый слой воздуха более разрежен. Однако из-за невозможности точно знать изменение температуры самое простое, что можно сделать, это предположить эту температуру одинаковой и равной среднему из температур на двух рассматриваемых станциях. Так как объём столба воздуха увеличивается соответственно этой средней температуре, определяемая высота, отвечающая наблюдённому понижению барометра, должна быть увеличена в том же отношении. Это равносильно умножению коэффициента 18 336 на единицу плюс число 0.00375, взятое столько раз, сколько градусов в средней температуре.

Водяные пары, находящиеся в атмосфере, при том же давлении и температуре имеют меньшую плотность, чем воздух, и, следовательно, уменьшают общую плотность атмосферы. А так как их количество, при прочих равных условиях, больше при сильной жаре, это частично можно учесть, несколько увеличив число 0.00375, выражающее расширение воздуха на каждый градус повышения температуры. Я нахожу, что, увеличив его до 0.004, можно достаточно хорошо удовлетворить совокупности наблюдений и употреблять его, по крайней мере, до тех пор, пока после длинного ряда наблюдений с гигрометром этот прибор не будет привлечён для барометрического определения высот.15

До сих пор мы предполагали силу тяжести постоянной. Но мы уже видели, что с увеличением высоты она немного уменьшается. Это требует от нас нового увеличения высоты, полученной по понижению барометра. Мы учтём это уменьшение силы тяжести, немного увеличив постоянный коэффициент. Сравнивая большое число барометрических наблюдений, сделанных у подножия и на вершине многих гор, высота которых была точно измерена тригонометрическим путём, г-н Рамоп получил для этого коэффициента значение 18 393 м, но с учётом изменения силы тяжести оно уменьшается до 18 336 м. Последнее значение коэффициента для отношения веса ртути к весу такого же объёма воздуха даёт величину 10477.9 на параллели 50g [45°] при температуре 0° и высоте столба ртути барометра, равной 0.76 м. Г-да Био и Араго, взвешивая с большой тщательностью известные объёмы ртути и воздуха, нашли для этого отношения, приведённого к той же параллели, величину 10466.6, но они употребляли очень сухой воздух вместо того, чтобы брать его из окружающей атмосферы, в которой он всегда смешан с большим или меньшим количеством водяных паров, определяемым с помощью гигрометра. Эти пары легче воздуха в отношении почти 10 к 17. Поэтому непосредственные измерения должны давать немного меньшее отношение веса ртути к воздуху, чем барометрические наблюдения.

Эти опыты уменьшают коэффициент 18 336 м до величины 18 316.6 м. Чтобы его поднять до величины 18 393 м, даваемой наблюдениями барометра, пришлось бы, если не учитывать изменения силы тяжести, предположить слишком большую среднюю влажность атмосферы. Таким образом, уменьшение силы тяжести с высотой заметно даже при барометрических наблюдениях. Коэффициент 18 393 м почти точно исправляет влияние этого уменьшения. Но другое изменение силы тяжести, зависящее от широты места наблюдения, также должно влиять на этот коэффициент. Он был определён для широты, которую без ощутимой ошибки можно считать 50g [45°], и должен быть увеличен на экваторе, где сила тяжести меньше, чем на этой широте. В самом деле, ясно, что на экваторе надо подняться выше, чтобы перейти от данного давления атмосферы к давлению, меньшему на определённую величину, так как в интервале вес воздуха меньше. Следовательно, коэффициент 18 393 м должен изменяться так же, как длина секундного маятника, укорачивающегося или удлиняющегося в зависимости от увеличения или уменьшения силы тяжести. На основании сказанного ранее об изменении этой длины легко заключить, что к этому коэффициенту надо прибавить произведение 26.164 м на косинус удвоенной широты места наблюдения.

Наконец, к высотам барометра надо придать ещё небольшую поправку, зависящую от разности температур ртути в барометре на обеих станциях. Чтобы хорошо знать эту разность, в оправу барометра вставляют небольшой ртутный термометр таким образом, чтобы ртуть в этих двух приборах была всегда почти одинаковой температуры. На более холодной станции ртуть плотнее, и поэтому в барометре столбик ртути уменьшен. Чтобы его привести к длине, которую он имел бы, если бы его температура равнялась температуре на более тёплой станции, его надо увеличить на его 5550-ю часть, умноженную на число градусов в разности температур ртути на обеих станциях.

Итак, вот правило для барометрического определения высот, которое мне кажется одновременно и наиболее точным, и самым простым. Прежде всего исправляется, как было указано, отсчёт высоты ртути в барометре более холодной станции. Затем к коэффициенту 18 393 м прибавляется произведение 26.164 м на косинус удвоенной широты. Исправленный таким образом коэффициент умножается на табличный логарифм отношения наибольшей исправленной высоты барометра к наименьшей. Наконец, это произведение умножается на удвоенную сумму градусов термометров, указывающих температуру воздуха на каждой станции, и полученное произведение, разделённое на тысячу, прибавляется к предыдущему. Полученная сумма с большим приближением даёт превышение верхней станции над нижней, особенно если отсчёты барометров сделаны в наиболее благоприятное время суток, которым представляется полдень.16

В небольших объёмах воздух невидим. Но лучи света, отражённые всеми слоями атмосферы, вызывают ощутимый эффект видимости воздуха, окрашивая его в голубой цвет, который придаёт голубоватый оттенок отдалённым предметам и образует небесную лазурь. Вот почему мы видим туман, в который мы погружены, только на более или менее значительном расстоянии. Этот голубой свод, к которому небесные светила нам кажутся прикреплёнными, стало быть, очень близок к нам. Это не что иное как земная атмосфера, и небесные тела расположены за её пределами на огромных расстояниях. Солнечные лучи, которые молекулами воздуха в изобилии отражаются к нам перед восходом и после заката Солнца, образуют рассвет и вечерние сумерки, распространяясь на угловое расстояние, превышающее 20g [18°], от этого светила. Это доказывает, что самые высокие молекулы атмосферы находятся на высоте, по меньшей мере, 60 000 м.

Если бы глаз мог различать и относить на их истинные места точки внешней поверхности атмосферы, мы видели бы небо как шаровой сегмент, образованный частью этой поверхности, отрезанной плоскостью, касательной к Земле. А так как высота атмосферы очень мала по сравнению с земным радиусом, небо представлялось бы нам в виде пониженного свода. Хотя мы не можем разглядеть пределы атмосферы, но так как лучи, которые она нам посылает, на горизонте приходят из большей глубины чем в зените, мы должны считать, что она протяженнее в горизонтальном направлении. К этому присоединяется ещё то, что наличие предметов между нами и горизонтом увеличивает расстояние до той части неба, которая находится далее линии горизонта. Поэтому нам небо должно казаться пониженным, подобно шаровому сегменту. Небесное светило, находящееся на высоте около 26g [23°], кажется делящим на две равные части длину кривой, образуемой сечением поверхности неба вертикальной плоскостью от горизонта до зенита. Отсюда следует, что, если эта кривая есть дуга окружности, горизонтальный радиус видимого небесного свода относится к его вертикальному радиусу приблизительно как 31/4 к 1. Но это отношение изменяется вместе с причинами этой иллюзии. Видимые размеры Солнца и Луны, пропорциональные углам, под которыми мы их видим, и кажущимся расстояниям точек неба, к которым мы их относим, на горизонте кажутся нам большими, чем в зените, хотя на горизонте они видны под меньшими углами.17

Световые лучи в атмосфере проходят не по прямым направлениям. Они непрерывно отклоняются к Земле. Наблюдатель, видящий предметы только в направлении касательной к кривой, которую они описывают, усматривает их выше, чем они находятся на самом деле, и небесные светила видны на горизонте тогда, как они ещё находятся под ним. Отклоняя лучи Солнца, атмосфера позволяет нам дольше наслаждаться его присутствием и удлиняет день, который делается ещё длиннее благодаря зорям. Астрономам было очень важно знать законы и величину рефракции света в нашей атмосфере, чтобы получать истинные положения небесных тел. Но прежде чем представить результаты их изысканий по этому предмету, я в немногих словах изложу основные свойства света.

Поделиться:
Популярные книги

Страж Кодекса. Книга IV

Романов Илья Николаевич
4. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга IV

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал

Пятнадцать ножевых 3

Вязовский Алексей
3. 15 ножевых
Фантастика:
попаданцы
альтернативная история
7.71
рейтинг книги
Пятнадцать ножевых 3

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Младший сын князя. Том 2

Ткачев Андрей Юрьевич
2. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 2

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3