Чтение онлайн

на главную - закладки

Жанры

Изложение системы мира
Шрифт:

Около 50 лет прошло после открытия притяжения, и к этому открытию не было прибавлено ничего замечательного. Всё это время понадобилось для того, чтобы великая истина была широко понята и преодолела противодействие, оказанное принятым на континенте мнением, что тяготение, по примеру Декарта, следует объяснять механически, чтобы истина преодолела различные системы, придуманные по этому поводу, и авторитет нескольких великих геометров, боровшихся с нею, может быть, из самолюбия, но тем не менее ускоривших её победу своими работами по анализу бесконечно малых. Среди современников Ньютона Гюйгенс сделал больше всех других, чтобы достоинства этого открытия были оценены. Он принял утверждение, что притяжение друг к другу больших небесных тел обратно пропорционально квадратам расстояний, а также все выводы, сделанные из этого Ньютоном относительно эллиптического движения планет, спутников и комет, и силы тяжести на поверхности планет, сопровождаемых спутниками. Он воздал Ньютону в этом отношении всё по его заслугам. Но ошибочные идеи о причине силы тяжести заставили его отбросить взаимное притяжение молекул, теории фигуры планет и зависящие от этой фигуры изменения силы тяжести на их поверхности. Однако надо заметить, что закон всемирного тяготения для

современников Ньютона, да и для него самого ещё не имел той несомненности, которую ему придали успехи математических наук и наблюдений. Эйлер и Клеро, подобно Даламберу, применившие математический анализ к возмущениям небесных движений, первые не считали его достаточно установленным, чтобы различия, найденные ими в наблюдениях и своих расчётах, относившихся к движению Сатурна и лунного перигея, приписать неточностям приближений или вычислений. Но эти три великих геометра и их последователи, проверив расчёты, улучшив методы и продвинув приближения настолько, насколько это было необходимо, посредством одного только закона тяготения пришли наконец к объяснению всех явлений системы мира и довели теорию и астрономические таблицы до точности, превзошедшей ожидаемую. Не прошло ещё и трёх веков, как Коперник ввёл в эти таблицы движение Земли и других планет вокруг Солнца. Около века спустя Кеплер ввёл в них законы эллиптического движения, зависящие только от солнечного притяжения. Теперь они включают множество неравенств, рождённых из взаимного притяжения тел планетной системы; весь эмпиризм из них изгнан, а из наблюдений в них использованы только необходимые величины.

Вся мощь анализа проявляется главным образом в этих его применениях. Это чудесный инструмент, без которого было бы невозможно проникнуть в столь сложный по своим проявлениям механизм, причина которого так проста. Геометр в своих формулах охватывает теперь всю совокупность солнечной системы и её последовательные изменения. Он возвращается к различным состояниям этой системы в самые отдалённые времена и переходит к её состояниям, которые откроют наблюдателям грядущие века. Он видит, как эти большие изменения, полное развитие которых требует миллионов лет, возобновляются за немногие столетия в системе спутников Юпитера благодаря быстроте их обращений и производят необычные явления, предвиденные астрономами, но слишком сложные или слишком медленные, чтобы они могли определить их законы. Теория тяготения, благодаря стольким приложениям ставшая средством таких же надёжных открытий, как сами наблюдения, познакомила нас с этими законами и со многими другими, из которых наиболее замечательные — это большие неравенства Юпитера и Сатурна, вековые уравнения движения Луны относительно Солнца, своих узлов и перигея и замечательное отношение, существующее между движениями трёх первых спутников Юпитера.

При помощи этого средства геометр смог извлечь из наблюдений, как из неисчерпаемого рудника, наиболее важные элементы астрономии, которые без анализа оставались бы навечно скрытыми. Он определил относительные значения масс Солнца, планет и спутников по обращениям этих светил и по развитию их периодических и вековых неравенств. Скорость света и эллиптичность Юпитера были даны ему затмениями спутников Юпитера с большей точностью, чем непосредственными наблюдениями. Он вывел вращение Урана и Сатурна с его кольцом, а также сжатие этих двух планет из взаимных положений орбит их спутников. Параллаксы Солнца и Луны и сама эллиптичность земного сфероида проявились в лунных неравенствах, потому что Луна своим движением выявляет усовершенствованной астрономии сжатие Земли, с шаровидностью которой она познакомила первых астрономов своими затмениями. Наконец, благодаря счастливому сочетанию анализа с наблюдениями, Луна, которая, казалось, была придана Земле, чтобы освещать её ночью, стала ещё самым надёжным лоцманом мореплавателя, оберегая его от опасностей, которым он долгое время подвергался из-за ошибок в вычислении своего места положения. Совершенство лунной теории, которому моряки обязаны этим ценным преимуществом и возможностью с точностью определить положение места, где они пристали к берегу, есть результат полувековой работы геометров. За этот короткий промежуток времени география, обогащённая применением лунных таблиц и морских часов, сделала больше успехов, чем за все предыдущие века. Эти величественные теории объединяют в себе всё, что может дать цену открытиям: величие и практическую пользу предмета, плодотворность результатов и заслугу преодоления трудностей.

Чтобы этого достичь, понадобилось одновременно усовершенствовать механику, оптику, наблюдения и анализ, которые в основном обязаны своим быстрым ростом потребностям небесной физики. Её можно будет сделать ещё более точной и простой, но последующие поколения увидят с благодарностью, что современные геометры не передали им ни одного астрономического явления, у которого они не определили бы законы и причины. Надо отдать Франции должное и справедливо отметить, что если Англии досталась честь открыть всемирное тяготение, то главным образом французским геометрам и работам, получившим премии Французской Академии наук, мы обязаны многочисленными применениями этого открытия и революцией, которую оно произвело в астрономии.24

Не одно только притяжение, регулирующее движение и фигуру небесных тел, существует между их молекулами. Они подчинены ещё притягивающим силам, от которых зависит внутреннее строение тел и которые проявляются только на неощутимых для наших чувств расстояниях. Ньютон первый дал пример вычисления сил такого рода, доказав, что при прохождении света из одной прозрачной среды в другую притяжение сред преломляет его так, что отношение синусов углов преломления и падения всегда постоянно; это уже было известно из опыта. В своём трактате по оптике великий физик из таких сил вывел сцепление, сродство, известные тогда химические явления и явления капиллярности. Этим он установил истинные начала химии, всеобщее признание которых запоздало ещё больше, чем признание всемирного тяготения. Однако он всё же дал несовершенное объяснение явлений капиллярности, и их полная теория стала делом его последователей.

Является ли принцип всемирного тяготения первичным законом природы или это лишь общее проявление неизвестной причины? Нельзя ли к этому принципу привести явление сродства? Ньютон, более осторожный, чем некоторые из его учеников, не высказывался по этим вопросам, на

которые наше незнание глубинных свойств материи не позволяет дать удовлетворительные ответы. Вместо того чтобы строить гипотезы, ограничимся лишь некоторыми размышлениями об этом принципе и о том, как он был использован геометрами.

Из равенства действия противодействию Ньютон заключил, что каждая молекула небесного тела должна притягивать его так же, как она притягивается им сама, и что, таким образом, сила тяжести есть равнодействующая притяжения всех молекул притягивающего тела. Принцип действия, равного противодействию, встречается с некоторыми затруднениями, когда способ действия сил неизвестен. Уже Гюйгенс, сделавший этот принцип основанием своих изысканий о соударении упругих тел, нашёл, что он недостаточен, чтобы установить взаимное притяжение молекул. Следовательно, было необходимо подтвердить это притяжение путём наблюдений, чтобы не оставалось никаких сомнений по этому очень важному для ньютоновой теории вопросу. Небесные явления можно разделить на три класса. Первый из них охватывает все явления, зависящие только от стремления центров небесных тел друг к другу. Таковы эллиптические движения планет и спутников и их взаимные возмущения, независимые от их фигур. Ко второму классу я отношу явления, которые зависят от стремления молекул притягиваемых тел к центрам притягивающих тел. Таковы морские приливы и отливы, прецессия равноденствий и либрация Луны. Наконец, к третьему классу мною отнесены явления, зависящие от действия молекул притягивающих тел на центры притягиваемых и на свои собственные молекулы. Два лунных неравенства, вызванных сжатием Земли, и изменения силы тяжести на её поверхности, движения орбит спутников Юпитера и Сатурна, фигура Земли относятся к явлениям такого рода. Геометры, которые для объяснения силы тяжести окружали вихрем каждое небесное тело, могли допускать ньютоновы теории применительно к явлениям первых двух классов. По они были вынуждены отвергнуть, как это сделал Гюйгенс, теории явлений, относящихся к третьему классу и основанных на взаимном притяжении молекул притягивающих тел. Совершённое согласие этих теорий со всеми наблюдениями теперь не должно оставлять ни малейшего сомнения относительно взаимного притяжения молекул. Закон взаимного притяжения, обратно пропорционального квадрату расстояния, — это закон эманаций, исходящих из центра. Он представляется законом всех сил, влияние которых проявляется на заметных расстояниях, как это было обнаружено в случае электрических и магнитных сил. Таким образом, этот закон, в точности удовлетворяя всем явлениям, в силу своей простоты и всеобщности должен рассматриваться как точный. Одно из его замечательных свойств состоит в том, что если бы размеры всех тел вселенной, их взаимные расстояния и их скорости пропорционально увеличились или уменьшились, то эти тела описывали бы кривые, в точности подобные тем, которые они описывают, так что вселенная, уменьшенная таким способом до самого маленького пространства, которое можно вообразить, представляла бы наблюдателям всегда такие же видимые явления. Следовательно, эти явления не зависят от размеров вселенной, так же как вследствие закона пропорциональности силы и скорости они независимы от абсолютного движения, которое вселенная может иметь в пространстве. Поэтому простота законов природы47 позволяет нам наблюдать и знать только их отношения.25

Закон притяжения даёт небесным телам свойство притягиваться почти в точности так же, как если бы их массы были сосредоточены в их центрах тяжести. Кроме того, он придаёт их поверхностям и орбитам, которые они описывают, эллиптическую форму, самую простую после сферической и круговой, которые древние полагали присущими светилам и их движениям.

Мгновенно ли передаётся притяжение от одного тела к другому? Продолжительность его передачи, если бы она была для нас ощутима, обнаружилась бы главным образом в вековом ускорении движения Луны. Я предполагал таким способом объяснить наблюдаемое ускорение этого движения и нашёл, что удовлетворить наблюдениям можно, лишь приписав силам притяжения скорость, в 7 000 000 раз большую скорости светового луча. Так как причина векового уравнения Луны в настоящее время хорошо известна, мы можем утверждать, что тяготение передаётся, по крайней мере, в 50 000 000 раз быстрее света. Поэтому, не боясь внести заметную ошибку, можно считать его распространение мгновенным.

Притяжение может ещё породить и беспрерывно поддерживать движение в системе тел, бывших изначально неподвижными, так как неправильно было бы сказать, подобно некоторым философам, что со временем оно должно объединить их всех в их общем центре тяжести. Единственные элементы, которые должны всегда оставаться равными нулю, это движения этого центра и сумма площадей, описанных вокруг него за некоторое время всеми молекулами системы, спроектированными на какую-либо плоскость.

Глава VI РАЗМЫШЛЕНИЯ О СИСТЕМЕ МИРА И О БУДУЩИХ УСПЕХАХ АСТРОНОМИИ

Очерк по истории астрономии, который мы дали, представляет три хорошо различимых периода, которые, относясь к явлениям, к законам, управляющим ими, и к силам, от коих эти законы зависят, показывают нам путь этой науки, которым она следовала в своём развитии и которым другие естественные науки должны следовать по её примеру. Первый период охватывает наблюдения видимых движений небесных тел, сделанные астрономами до Коперника, и гипотезы, придуманные ими, чтобы объяснить эти движения и подвергнуть их вычислениям. Второй период характерен тем, что Коперник выводит из этих видимых движений вращение Земли вокруг себя и вокруг Солнца и Кеплер открывает законы планетных движений. Наконец, третий период знаменуется тем, что Ньютон, опираясь на эти законы, поднимается до принципа всемирного тяготения, и геометры, прилагая к этому принципу математический анализ, выводят из него все астрономические явления и многочисленные неравенства движений планет, спутников и комет. Таким образом, астрономия свелась к решению великой проблемы механики, для которой элементы небесных движений являются произвольными постоянными. Она обладает всей достоверностью, вытекающей из огромного количества и разнообразия строго объяснённых явлений и из простоты принципа, которого одного достаточно для их объяснения. Не опасаясь, что появление нового светила опровергнет этот принцип, можно заранее утверждать, что движение этого светила будет с ним в согласии. Мы уже видели это на примере Урана и четырёх недавно открытых телескопических планет. Каждое появление кометы также даёт этому новое подтверждение.48

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Страж Кодекса. Книга IV

Романов Илья Николаевич
4. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга IV

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Ротмистр Гордеев 3

Дашко Дмитрий
3. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 3

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Игра престолов

Мартин Джордж Р.Р.
Фантастика:
фэнтези
5.00
рейтинг книги
Игра престолов

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4