Как избежать климатических катастроф?: План Б 4.0: спасение цивилизации
Шрифт:
Мир находится на начальной стадии революции в технологии освещения. Недавно мы узнали, что компактные флуоресцентные лампы могут обеспечивать такое же освещение, как и изобретенные сто лет назад лампочки накаливания, расходуя при этом вчетверо меньше электричества. Это была волнующая новость. Теперь мы изыскиваем еще более передовую технологию освещения — светодиоды, которые потребляют на 85 % энергии меньше, чем лампы накаливания. Кроме того, датчики движения могут отключать освещение в помещениях, где никого нет, а другие датчики могут регулировать интенсивность освещения в зависимости от естественного дневного освещения. Переход с ламп накаливания на светодиоды и установка датчиков движения и регуляторов освещения может снизить потребление электричества на освещение более чем на 90 % [70] .
70
Larry Kinney, Lighting Systems in Southwestern Homes: Problems and Opportunities, prepared for DOE, Building America Program through the Midwest Research Institute, National Renewable Energy Laboratory Division (Boulder, CO: Southwest Energy Efficiency Project, June 2005, pp. 4–5; CREE LED Lighting, Ultra-Efficient Lighting” —
Что касается осуществления Плана Б на национальном уровне, то, к примеру, Дания в настоящее время получает более 20 % электричества за счет ветровых генераторов и имеет планы довести долю такой энергии до 50 %. 75 млн европейцев получают электричество, необходимое им для бытовых целей, с ветровых электростанций. Около 27 млн китайских домов получают горячую воду от установленных на крышах солнечных батарей нагревания воды. В Исландии, где 90 % домов обогревают с помощью геотермальных источников, практически отказались от использования угля для отопления домов. На Филиппинах 26 % электроэнергии получают от электростанций, работающих на геотермальных водах [71] .
71
Сведения о Дании взяты из публикации Global Wind Energy Council (GWEC) “Interactive World Map” — см.: www.gwec.net/index. php? id=126, просмотрено автором 29 мая 2009 г., и из статьи: Flemming Hansen, “Denmark to Increase Wind Power to 50 % by 2025, Mostly Offshore”, Renewable Energy Access, 5 December 2006; GWEC, Global Wind 2008 Report (Brussels: 2009), p. 13. Данные о потреблении электроэнергии, произведенной на ветровых станциях, в расчете на душу населения в Европе взяты из публикации European Wind Energy Association, “Wind Power on Course to Become Major European Energy Source by the End of the Decade”, press release (Brussels: 22 November 2004); данные о нагревании воды с помощью солнечной энергии в Китае взяты из публикации: Werner Weiss, Irene Bergmann, and Roman Stelzer, Solar Heat Worldwide: Markets and Contribution to the Energy Supply 2007 (Gleisdorf, Austria: International Energy Agency, Solar Heating & Cooling Programme, May 2009), p. 20; данные по Исландии взяты из публикации: Iceland National Energy Authority and Ministries of Industry and Commerce, Geothermal Development and Research in Iceland (Reykjavik: April 2006), p. 16; доля электричества рассчитана Earth Policy Institute на основе данных об установленных мощностях, опубликованных в статье: Ruggero Bertani, «World Geothermal Generation in 2007”, GHC Bulletin, September 2007, p. 9; коэффициент использования мощностей взят из статьи: Ingvar B. Fridleifsson et al., “The Possible Role and Contribution of Geothermal Energy to the Mitigation of Climate Change, опубликованной в сборнике: O. Hohmeyer and T. Trittin, eds., IPCC Scoping Meeting on Renewable Energy Sources, Proceedings (Luebeck, Germany: 20–25 January 2008), p. 5; данные о совокупном производстве электричества взяты из публикации “World Total Net Electricity Generation, 1980–2005” в сборнике International Energy Annual 2005 (Washington, DC: 13 September 2007), изданном министерством энергетики США и Американским инженерным институтом.
То, что мог бы представлять собой претворенный в жизнь План Б, можно увидеть в горах Южной Кореи, где заново высажены леса. Некогда пустынная, почти лишенная деревьев страна, Южная Корея ныне покрыта лесами, которые сдерживают наводнения, препятствуют эрозии почв и восстанавливают здоровую окружающую среду и стабильность в сельских местностях. В США, где за последние четверть века из сельскохозяйственного оборота было выведено 10 % пахотных земель, по большей части подверженных эрозии, перешли к методам консервации пашни на землях, не выведенных из оборота, что уменьшило эрозию почв на 40 %. При этом сбор зерновых увеличился на 20 % [72] .
72
Se-Kyung Chong, “Anmyeon-do Recreation Forest: A Millennium of Management” — в книге: Patrick B. Durst et al., In Search of Excellence: Exemplary Forest Management in Asia and the Pacific, Asia-Pacific Forestry Commission (Bangkok: FAO Regional Office for Asia and the Pacific, 2005), pp. 251–259; Daniel Hellerstein, “USDA Land Retirement Programs” — см. в публикации: USDA, Agricultural Resources and Environmental Indicators 2006 (Washington, DC: July 2006); USDA, ERS, Agri-Environmental Policy at the Crossroads: Guideposts on a Changing Landscape, Agricultural Economic Report No. 794 (Washington, DC: January 2001); USDA, op. cit. note 6.
Некоторые наиболее инновационные начинания исходят из городов. В бразильском городе Куритиба начали реконструкцию транспортной системы в 1974 г., и два десятилетия спустя интенсивность автомобильного движения в городе уменьшилась на 30 %, хотя население города удвоилось. В Амстердаме существует диверсифицированная транспортная система, при которой около 40 % всех поездок в городе осуществляют на велосипедах. А в Париже существует план диверсификации транспорта, предусматривающий развитие велосипедного транспорта, благодаря которому интенсивность автомобильного движения в городе должна сократиться на 40 %. В Лондоне за автомобили, въезжающие в центр города, уплачивают пошлину, а собранные таким образом средства направляются на совершенствование городского общественного транспорта [73] .
73
Molly O’Meara, Reinventing Cities for People and the Planet, Worldwatch Paper 147 (Washington, DC: Worldwatch Institute, June 1999), p. 47; City of Amsterdam, “Bike Capital of Europe” — см. www.toamsterdam. nl, просмотрено автором 2 июля 2009 г.; Serge Schmemann, “I Love Paris on a Bus, a Bike, a Train and in Anything but a Car”, New York Times, 26 July 2007; Transport for London, Central London Congestion Charging: Impacts Monitoring (London: various years).
Задача
Часть I
Проблемы
2. Давление населения на землю и водные ресурсы
Объясняя школьникам суть экспоненциального роста, французы используют загадку: в пруду, где растут лилии, есть один-единственный росток. Ежедневно количество ростков удваивается. На второй день в пруду уже два ростка, на третий — четыре, на четвертый — восемь и т. д. «Если на тридцатый день пруд заполнен лилиями целиком, в какой момент он будет полон цветами наполовину?» Ответ: «На двадцать девятый» [74] .
74
Lester R. Brown. The Twenty-Ninth Day (New York: W. W. Norton & Company, 1978).
То, что происходит сейчас на сельскохозяйственных угодьях мира и в обеспечении этих угодий водой, дает основания предположить, что у нас уже наступил тридцать первый день. После весьма умеренного расширения в период с 1950 по 1981 г., площади, используемые для возделывания зерновых, перестали увеличиваться. Напротив, площади под зерновыми несколько уменьшились вследствие эрозии и перевода земель под несельскохозяйственные нужды. Это сокращение полностью нейтрализовало площади распаханных целинных земель. Почти на одной трети пахотных земель мира почвенный слой разрушается быстрее, чем происходит формирование новых почв в результате геологических процессов. В итоге естественная производительность земли стала снижаться [75] .
75
Сведения о площади зернового клина в США взяты из электронной базы данных министерства сельского хозяйства США Production, Supply and Distribution — см.: www.fas.usda.gov/psdonline (данные обновлены 9 апреля 2009 г.). Цифры, характеризующие разрушение почвенного слоя, рассчитаны автором на основе данных, приведенных в статье: Mohan K. Wali et al. “Assessing Terrestrial Ecosystem Sustainability”, Nature & Resources, October-December 1999, pp. 21–33, и в публикации: World Resources Institute (WRI), World Resources 2000–2001 (Washington, DC: 2000).
С 1950 по 2000 г. площадь орошаемых земель в мире утроилась, но после 2000 г. особого увеличения таких площадей не наблюдалось. В некоторых странах площадь орошаемых земель даже начала быстро сокращаться по мере истощения водоносных пластов чрезмерным забором воды, по мере таяния и исчезновения горных ледников, питающих водой множество рек и ирригационных систем. Возникла угроза для многих ирригационных систем, зависящих от подземных вод или от рек [76] .
Мы не можем избежать интенсивного использования воды при производстве продовольствия. В среднем каждый житель земли выпивает около 4 литров воды в день — либо в виде воды, либо в виде кофе, соков, газировки, вина или других напитков. Но для производства того, что каждый из нас ежедневно съедает, необходимо 2000 л воды, т. е. в 500 раз больше, чем человек выпивает. В сущности, ежедневно каждый из нас «съедает» 2000 л воды [77] .
76
Электронная база данных Продовольственной и сельскохозяйственной организации ООН (FAO) ResourceSTAT — cм.: faostat.fao.org (данные обновлены в апреле 2009 г.); Lester R. Brown, “Melting Mountain Glaciers Will Shrink Grain Harvests in China and India”, Plan B Update (Washington, DC: Earth Policy Institute, 20 March 2008).
77
Jacob W. Kijne, Unlocking the Water Potential of Agriculture (Rome: FAO, 2003), p. 26.
Эрозия почв поначалу лишь снижает их естественное плодородие, а затем, после прохождения некоторой точки, приводит к тому, что земля становится бесплодной, и ее приходиться забрасывать. Оба эти последствия эрозии подрывают продовольственную безопасность мира. Сочетание роста населения и эрозии почв привело к тому, что ряд стран, некогда обеспечивавших себя зерном, стали сильно зависеть от его импорта.
Поскольку почти во всех странах мира сокращаются поверхности водоемов, которые питают подземные воды, многие страны ныне сталкиваются с потерями используемой для орошения воды, что чревато голодом, поскольку запасы подземных вод истощены, а колодцы иссыхают. Чрезмерный забор воды, которую выкачивают из подземных пластов быстрее, чем они пополняются, — классический пример перегрузки экосистем и их разрушения. Способ, которым мы удовлетворяем текущие потребности в продовольствии, практически гарантирует падение его производства в будущем, когда запасы подземных вод будут полностью истощены. В сущности, мы создали «экономику продовольственного пузыря». И эрозия почв, и истощение водоносных пластов — следствие нашего текущего потребления за счет будущих поколений [78] .
78
Lester R. Brown. Outgrowing the Earth (New York: W. W. Norton & Company, 2004), pp. 101–102.
ЭРОЗИЯ ОСНОВ ЦИВИЛИЗАЦИИ
Тонкий почвенный слой, покрывающий поверхность суши, — основа, фундамент цивилизации. Этот слой (обычно его толщина составляет 6 дюймов или около того) образовался в течение длительных геологических периодов благодаря тому, что темпы формирования почвы превосходили естественные темпы эрозии. Но в течение последнего столетия наступил момент, когда под давлением численности населения и поголовья скота на обширных площадях темпы эрозии почв стали обгонять темпы образования почв.