Чтение онлайн

на главную - закладки

Жанры

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:

Далее появляется диалоговое мини-окно ФОРМАТ ЛИНИИ ТРЕНДА, в котором мы можем выбрать соответствующие ПАРАМЕТРЫ ЛИНИИ ТРЕНДА (рис. 2.4), необходимые для построения прогностических моделей. При этом воспользуемся всеми имеющимися в Excel форматами тренда за одним-единственным исключением: из полиномиальных трендов возьмем тренды не выше третьей степени. В научной литературе обычно не рекомендуют использовать для аппроксимации фактических данных более сложные полиномы, поскольку они плохо поддаются интерпретации и, несмотря на высокий коэффициент детерминации (по включенной в статистическую модель базе данных), обладают низкой прогностической ценностью.

Сначала построим

самый простой линейный тренд. С этой целью выберем в окне ФОРМАТ ЛИНИИ ТРЕНДА в опции ПАРАМЕТРЫ ЛИНИИ ТРЕНДА формат ЛИНЕЙНАЯ. При этом поставим галочку в опциях ПОКАЗЫВАТЬ УРАВНЕНИЕ НА ДИАГРАМММЕ, ПОМЕСТИТЬ НА ДИАГРАММУ ВЕЛИЧИНУ ДОСТОВЕРНОСТИ АППРОКСИМАЦИИ (R^2) [6] . В результате получим диаграмму (рис. 2.5), показывающую линейный тренд, т. е. линейную зависимость роста курса доллара от времени (порядковый номер 1 — июнь 1992 г.).

<

6

Знак ^ используется в качестве обозначения степени числа, т. е. R^2 равно R2.

image l:href="#"/>

Поочередно задавая различные параметры тренда и сравнивая коэффициенты детерминации, составим табл. 2.7, в которой разместим по мере роста коэффициента детерминации прогностические модели с различным форматом тренда. Наиболее высокий коэффициент детерминации соответствует уравнению регрессии, полученному путем аппроксимации по степенному тренду. В этом случае R2 оказался равен 0,919136, т. е. это уравнение регрессии объясняет 91,91 % всех ежемесячных колебаний курса доллара. Соответственно доля случайной компоненты оказалась равна: 100 % — 91,91 % = 8,09 %.

Чтобы правильно интерпретировать уравнения регрессии, полученные графическим способом, необходимо иметь в виду, что в процессе построения тренда программа Excel автоматически задает в качестве зависимой переменной у ежемесячный курс доллара, а в качестве независимой х — порядковый номер месяца. Например, экономическая интерпретация уравнения регрессии со степенной функцией у = 0,0443609х1,2807295 следующая: курс доллара в период с июня 1992 г. по апрель 2010 г. ежемесячно рос со средней скоростью 1,28 % при исходном уровне 4,44 коп. [7]

7

В книге все стоимостные выражения указываются в деноминированных единицах. В январе 1998 г. в России была проведена деноминация (уменьшение номинала) рубля, в результате которой его стоимость уменьшилась в 1000 раз. В июне 1992 г. доллар стоил 44,4 руб. и в дальнейшем продолжал быстрый рост. Однако для осуществления математических расчетов необходимо пользоваться едиными масштабами измерения стоимости, поэтому можно сказать, что в этот момент доллар стоил 4,44 коп. в копейках 1998 г., а к апрелю 2010 г. его цена превышала 30 руб.

Как мы уже убедились, графический способ решения уравнения регрессии в программе Excel позволяет довольно существенно экономить время. Однако у этого способа есть и один весьма существенный недостаток, обусловленный тем, что при этом не проводится оценка статистической значимости как в целом уравнения регрессии, так и его коэффициентов.

Таким образом, графический способ решения уравнения регрессии целесообразно использовать на этапе предварительного отбора уравнений регрессии, имеющих наиболее высокий коэффициент детерминации. После отбора уравнения регрессии с высоким коэффициентом детерминации в Excel его нужно решить, используя в Пакете анализа опцию РЕГРЕССИЯ (см. алгоритм

действий № 3). Однако решение уравнения регрессии, аппроксимирующего фактические данные степенным трендом, имеет определенную специфику. В отличие от линейного тренда уравнение регрессии решается не относительно имеющихся исходных данных, а по отношению к их логарифмам. Объясняется это тем, что уравнение регрессии со степенным трендом относится по оцениваемым параметрам к нелинейным моделям, но путем логарифмирования его можно привести к линейному виду.

В результате уравнение регрессии для степенного тренда (см. табл. 2.7) приобретет следующий вид:

Следует иметь в виду, что приведение нелинейной функции к линейному виду с помощью логарифмирования используется очень часто, хотя это и приводит к некоторым коллизиям. Вот что пишут по этому поводу Е.М. Четыркин и И.Л. Калихман: «Однако такое преобразование приводит к тому, что оценка параметров базируется не на минимизации суммы квадратов отклонений, а на минимизации суммы квадратов отклонений в логарифмах…Следствием этого является некоторое смещение оценок параметров, получаемых обычным (линейным) МНК» [8] .

8

Четыркин Е.М., Калихман И.Л. Вероятность и статистика. М.: Финансы и статистика, 1982. С. 255.

Далее параметры этого уравнения регрессии находятся согласно формулам (2.1.4) и (2.1.5) либо решаются с помощью соответствующей компьютерной программы.

Поэтому прежде чем приступить к выполнению алгоритма действий № 3 «Как решить уравнение регрессии в Excel», нужно взять натуральные логарифмы (логарифмы, основанием которых служит число е = 2,71828) как от независимой переменной х — порядковый номер месяца, так и от зависимой переменной у — курс доллара. В Excel для этих целей можно воспользоваться функцией LN. Далее поступаем в полном соответствии с алгоритмом действий № 3, а данные, полученные после решения уравнения регрессии, занесем в табл. 2.8.

Согласно алгоритму действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов», проведем проверку статистической значимости этого уравнения регрессии. При этом выделим в табл. 2.8 все важнейшие пункты жирным шрифтом. В результате мы приходим к выводу, что у нас получились статистически значимыми уравнение регрессии и его коэффициенты как при 95 %-ном, так и 99 %-ном уровне надежности. Правда, поскольку уравнение регрессии мы решили относительно натуральных логарифмов, взятых от исходных данных, то в результате оно приобрело следующий вид:

LnY = -3,1154 + 1,28073 lпХ

Согласно последнему уравнению регрессии, прогноз курса доллара рассчитывается на основе логарифмов, взятых от исходных данных. Например, прогноз относительно апреля 2010 г. вычисляется следующим образом:

LnY = -3,1154 + 1,28073 x 5,370638 = 3,762939,

где 5,370638 = ln (215) — натуральный логарифм от порядкового номера апреля 2010 г. — 215.

Отсюда находим (в Excel потенцирование натуральных логарифмов производится с помощью функции ЕХР), что прогноз курса доллара на апрель 2010 г. равен

Y = ЕХР (3,762939) = 43,07482.

После проведения соответствующих преобразований уравнение регрессии приобретет следующий вид:

Y = ЕХР (-3,1154 + 1,28073 lnХ) = 0,044361 x X^1,28073.

С помощью последнего уравнения регрессии можно делать расчет прогнозов непосредственно от исходных данных, а не от их натуральных логарифмов. В результате можно получить следующий прогноз курса доллара на апрель 2010 г.:

Поделиться:
Популярные книги

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

Командир Красной Армии

Поселягин Владимир Геннадьевич
1. Командир Красной Армии
Фантастика:
попаданцы
8.72
рейтинг книги
Командир Красной Армии

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Любовь по инструкции

Zzika Nata
Любовные романы:
любовно-фантастические романы
5.85
рейтинг книги
Любовь по инструкции

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное