Чтение онлайн

на главную - закладки

Жанры

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
Алгоритм действий № 3
Как решить уравнение регрессии в Excel
Шаг 1. Ввод в уравнение исходных данных

Сначала в Microsoft Excel 2007 в верхней панели инструментов выбирается опция ДАННЫЕ (в Microsoft Excel 1997–2003 нужно выбрать опцию СЕРВИС), потом в появившемся окне АНАЛИЗ ДАННЫХ — опция РЕГРЕССИЯ. После чего появляется новое окно РЕГРЕССИЯ (рис. 2.1), в котором в графе ВХОДНОЙ ИНТЕРВАЛ У выделяем (с помощью мышки) столбец данных USDollar (ячейки $С$1:$С$216). Здесь же в графе ВХОДНОЙ ИНТЕРВАЛ Xвыделяем столбец данных Time (ячейки $В$1:$В$216), т. е. независимую переменную Т из нашего уравнения регрессии (2.2).

Шаг 2.
Дополнительные опции

Если бы мы хотели получить уравнение регрессии без свободного члена, который в формуле (2.2) обозначен символом а, то тогда нам следовало бы выбрать еще и опцию КОНСТАНТА-НОЛЬ. Но пока в использовании этой опции нет необходимости.

Опцию ОСТАТКИ следует выбирать тогда, когда есть необходимость, чтобы в выходных данных содержалась информация об отклонении расчетных У от их фактических значений. При этом остатки находятся по формуле

Опцию МЕТКИ применяют, чтобы переменные, включенные в уравнение регрессии, в ВЫВОДЕ ИТОГОВ были обозначены в виде заголовков соответствующих столбцов.

По умолчанию оценка в Excel параметров уравнения регрессии делается с 95 %-ным уровнем надежности. Однако в случае необходимости в опции УРОВЕНЬ НАДЕЖНОСТИ можно поставить цифру 99, что означает задание для программы оценить коэффициенты регрессии с 99 %-ным уровнем надежности. В результате в ВЫВОДЕ ИТОГОВ мы получим данные, характеризующие как в целом уравнение регрессии, так и верхние и нижние интервальные оценки коэффициентов уравнения с 95 %-ным и 99 %-ным уровнями надежности. При 95 %-ном уровне надежности существует риск, что в 5 % случаях оценки коэффициентов уравнения регрессии могут оказаться статистически незначимыми, а при 99 %-ном уровне надежности этот риск равен 1 %.

Шаг 3. Вывод итогов

На заключительном этапе выбираем в параметрах вывода (окно РЕГРЕССИЯ) опцию ВЫХОДНОЙ ИНТЕРВАЛ, в которой указываем соответствующую ячейку Excel ($Н$2), далее щелкаем по надписи ОК и получаем ВЫВОД ИТОГОВ (см. рис. 2.1, где можно увидеть все заданные нами параметры уравнения регрессии). В случае необходимости вывод итогов можно получить на отдельном листе (опция НОВЫЙ РАБОЧИЙ ЛИСТ) или в новой книге Excel (опция НОВАЯ РАБОЧАЯ КНИГА).

Результаты решения уравнения регрессии, которые в программе Excel выдаются в виде единой таблицы под заголовком ВЫВОД ИТОГОВ, у нас представлены в виде трех блоков (табл. 2.2–2.4). Так, в табл. 2.2 сгенерированы результаты по регрессионной статистике, в табл. 2.3 дается дисперсионный анализ, а в табл. 2.4 оценивается статистическая значимость коэффициентов регрессии.

Параметры, представленные в табл. 2.2, характеризуют уровень аппроксимации фактических данных, полученный с помощью уравнения регрессии. Так, параметр МНОЖЕСТВЕННЫЙ R обозначает коэффициент множественной корреляции R, который характеризует тесноту связи между результативным признаком Y и факторами переменных Д, Х2…., Хn. Этот коэффициент изменяется в пределах от 0 до 1, причем чем ближе к 1, тем теснее корреляционная связь между переменными, включенными в уравнение регрессии. Коэффициент множественной корреляции равен квадратному корню, извлеченному из коэффициента детерминации R2, который также приводится в регрессионной статистике. Коэффициент множественной корреляции R находят по формуле:

Зная величину коэффициента корреляции R, можно дать качественную оценку силы связи между зависимой и независимыми переменными, включенными в уравнение (2.5).

С целью классификации силы связи обычно используют шкалу Чеддока (табл. 2.1).

Если между переменными существует функциональная связь, то R= 1, а если корреляционная связь отсутствует, то R = 0. Поскольку в табл. 2.2 коэффициент множественной корреляции Нравен 0,8456, то, согласно шкале Чеддока, связь между переменными, включенными в уравнение регрессии, можно считать высокой. Следует также заметить, что если коэффициент множественной корреляции меньше 0,7, то это означает, что величина коэффициента детерминации R2 будет меньше 50 %, а потому регрессионные модели с таким коэффициентом детерминации не имеют большого практического значения.

Однако самым важным является другой параметр регрессионной статистики — R– КВАДРАТ (в табл. 2.2 он выделен шрифтом), обозначающий коэффициент детерминации R2. Коэффициент детерминации R2 характеризует долю дисперсии результативного признака У, объясняемую уравнением регрессии, в общей дисперсии результативного признака. Коэффициент детерминации R2 находится по следующей формуле:

< image l:href="#"/>

Коэффициент детерминации R2, как и коэффициент множественной корреляции R, изменяется в пределах от нуля до единицы. Если R2 равен единице, то доля объясненной дисперсии составляет 100 %, а следовательно, связь между зависимой переменной Y и независимыми переменными Х1, Х2…., X1 носит функциональный характер. В том случае, когда R2 равен нулю, какая-либо связь между переменными в этом уравнении регрессии отсутствует.

Величина коэффициента детерминации R2 является одним из важнейших критериев при оценке качества уравнения регрессии. Так, при выборе из нескольких уравнений регрессии предпочтение (при прочих равных условиях) отдается тому, у которого коэффициент детерминации R2 ближе к единице. И это вполне понятно: чем выше коэффициент детерминации уравнения регрессии, тем выше у него уровень аппроксимации и соответственно ниже доля необъясненной дисперсии. В нашем случае коэффициент детерминации R2 = 0,7151, а потому можно сделать вывод, что в период с июня 1992 г. по апрель 2010 г. 71,51 % ежемесячных колебаний курса доллара (зависимая переменная Y), согласно уравнению регрессии, объяснялись изменением порядкового номера месяца (независимая переменная 7).

Другой параметр регрессионной статистики — НОРМИРОВАННЫЙ R-КВАДРАТ. Дело в том, что при добавлении в уравнение регрессии дополнительных факторов (независимых переменных) величина коэффициента детерминации R2 соответственно растет. Поэтому чтобы сделать сравнения коэффициентов детерминации между уравнениями регрессии с разным числом факторов более сопоставимыми, используется нормированный R2, величина которого корректируется в сторону уменьшения при добавлении в уравнение дополнительных факторов. В Пакете анализа Excel нормированный R2 вычисляют по формуле:

Поделиться:
Популярные книги

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

Новый Рал 10

Северный Лис
10. Рал!
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Новый Рал 10

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Отражения (Трилогия)

Иванова Вероника Евгеньевна
32. В одном томе
Фантастика:
фэнтези
8.90
рейтинг книги
Отражения (Трилогия)

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Любимая учительница

Зайцева Мария
1. совершенная любовь
Любовные романы:
современные любовные романы
эро литература
8.73
рейтинг книги
Любимая учительница

Де Виан Рейн. Хозяйка Инс-Айдена

Арниева Юлия
2. Делия де Виан Рейн
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Де Виан Рейн. Хозяйка Инс-Айдена

Жена проклятого некроманта

Рахманова Диана
Фантастика:
фэнтези
6.60
рейтинг книги
Жена проклятого некроманта

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Шайтан Иван 3

Тен Эдуард
3. Шайтан Иван
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Шайтан Иван 3