Как же называется эта книга
Шрифт:
Третий случай: A - нормальный человек и виновен. В этом случае высказывание обвинителя истинно, поэтому обвинитель должен быть рыцарем (он не может быть нормальным человеком, так как "вакансия" нормального человека занята A).
Следовательно, B может быть только лжецом.
Итак, вот что мы выяснили, рассматривая три возможных случая:
Подсудимый Не виновен Не виновен Виновен Рыцарь Нормальный Нормальный человек человек
Защитник Виновен Виновен Не виновен Нормальный Рыцарь Лжец человек
Обвинитель Не виновен Не виновен Не виновен
Все три случая согласуются с заявлениями, сделанными тремя главными участниками судебного процесса до прибытия Крэга.
После прибытия Крэга. Крэг спросил у обвинителя, виновен ли тот. Задавая свой вопрос, инспектор Крэг уже знал, что обвинитель не виновен (так как во всех трех случаях обвинитель не виновен), поэтому ответ обвинителя был нужен Крэгу лишь для того, чтобы установить, кто такой обвинитель: рыцарь или лжец. Если бы обвинитель правдиво ответил "нет", то инспектор Крэг понял бы, что случаи (1)
и (2) можно исключить, и не стал бы задавать новых вопросов. Но инспектору Крэгу после того, как обвинитель ответил, понадобилось задать еще несколько вопросов.
Следовательно, обвинитель должен быть лжецом и на вопрос инспектора ответить "да". Такой ответ заставил инспектора Крэга (а вместе с ним и читателя) исключить из рассмотрения случай (3) и в дальнейшем рассматривать только случаи (1) и (2). Это означает, что в действительности виновен защитник, но относительно подсудимого и защитника не известно, кто из них рыцарь и кто нормальный человек. Затем Крэг спросил у подсудимого, виновен ли обвинитель и, получив ответ, смог до конца разобраться в ситуации. На вопрос Крэга рыцарь ответил бы "нет", в то время как нормальный человек ответил бы либо "да", либо "нет".
Получив ответ "нет", Крэг не смог бы определить, был ли подсудимый рыцарем или нормальным человеком. Но поскольку для Крэга после ответа все стало ясно, то подсудимый должен был ответить "да". Следовательно, подсудимый - нормальный человек, а защитник - рыцарь (хотя он и виновен).
VII. Как избежать оборотней и другие полезные практические советы
Эта глава посвящена не столько занимательным аспектам логики, сколько ее практическим приложениям. Во многих житейских ситуациях полезный совет был бы как нельзя кстати. Учитывая это, я обстоятельно, шаг за шагом научу вас: A) как избежать оборотней в лесу; Б) как выбрать невесту; B) как защищать себя на суде; Г) как жениться на дочери короля.
Разумеется, я не могу поручиться, что вам непременно представится случай убедиться, насколько полезны мои советы, но как мудро объяснил Алисе Белый Рыцарь, нужно быть готовым ко всему!
А. КАК ВЕСТИ СЕБЯ B ЛЕСУ, ГДЕ ВОДЯТСЯ ОБОРОТНИ
Предположим, что вы находитесь в лесу, каждый обитатель которого либо рыцарь, либо лжец. (Напомним, что рыцари всегда говорят правду, а лжецы всегда лгут.) Кроме того, в лесу водятся оборотни, имеющие на редкость неприятную привычку иногда превращаться в волков и пожирать людей.
Оборотень может быть либо рыцарем, либо
88.
Вы берете интервью у трех обитателей леса A, B, C.
Известно, что ровно один из них оборотень. В беседе с вами они заявляют:
A: C - оборотень.
B: Я не оборотень.
C: По крайней мере двое из нас лжецы.
Наша задача состоит из двух частей.
а) Кто оборотень: рыцарь или лжец?
б) Если бы вам предстояло выбрать одного из трех обитателей леса в попутчики и вопрос о том, не окажется ли ваш избранник оборотнем, волновал бы вас сильнее, чем вопрос, не окажется ли он лжецом, то на ком из трех вы бы остановили свой выбор?
89.
Вы снова берете интервью у трех обитателей леса A, B и C.
Известно, что каждый из них либо рыцарь, либо лжец и среди них имеется ровно один оборотень. В беседе с вами они заявляют:
A: Я оборотень.
B: Я оборотень.
C: Не более чем один из нас рыцарь.
Проведите полную классификацию A, B и C.
90.
В этой и в двух следующих задачах мы снова встречаем трех обитателей леса A, B, C, каждый из которых либо рыцарь, либо лжец. Заявления делают только двое из них: A и B. В их высказываниях слово "нас" относится ко всем трем героям (к A, B и C), а не только к A и B.
Предположим, что A и B заявили следующее:
A: По крайней мере один из нас рыцарь.
B: По крайней мере один из нас лжец.
Известно, что по крайней мере один из них оборотень и ни один не является одновременно рыцарем и оборотнем. Кто оборотень?
91.
На этот раз A и B сделали следующие заявления:
A: По крайней мере один из нас лжец.
B: C - рыцарь.
Известно, что ровно один из них оборотень и что он рыцарь.
Кто оборотень?
92.
В этой задаче A и B заявили следующее:
A: По крайней мере один из нас лжец.
B: C - оборотень.
И в этой задаче известно, что ровно один из них оборотень и что он рыцарь. Кто оборотень?
93.
В этой задаче известно, что из трех обитателей леса ровно один оборотень, что он рыцарь, а два остальных - лжецы.
Заявление сделал только B: "С - оборотень".
Кто оборотень?
94.
В этой задаче, отличающейся изящной простотой, лишь два действующих лица: A и B. Лишь одно из них оборотень. A и B заявили следующее:
A: Оборотень - рыцарь.
B: Оборотень - лжец.
Кого из них вы выбрали бы себе в попутчики?
Б. КАК ВЫБРАТЬ ИЛИ ЗАВОЕВАТЬ НЕВЕСТУ
95. Как ее убедить?
Предположим, что вы один из жителей острова рыцарей и лжецов. Вы полюбили девушку и хотите жениться на ней. Но у вашей избранницы странные вкусы: по каким-то непонятным причинам она не желает выходить замуж за рыцаря и прочит себя в жены только лжецу. При этом ей подавай не бедного, а непременно богатого лжеца (для удобства мы будем предполагать, что все лжецы на острове делятся либо на богатых, либо на бедных). Предположим, что вы богатый лжец. Вам разрешается сказать избраннице лишь одну фразу.